【題目】如圖.點(diǎn)軸負(fù)半軸上,,,,是射線上的點(diǎn),連接,以為邊作等邊,點(diǎn)在直線的上方,則下列結(jié)論正確的是( )

A. 的增大而減小B. 的增大而增大

C. 的增大而減小D. 的增大而增大

【答案】B

【解析】

先證出ABC為等邊三角形,再求得OA,AB的長(zhǎng),分情況討論:當(dāng)點(diǎn)D與點(diǎn)A重合時(shí),點(diǎn)E與點(diǎn)B重合;當(dāng)點(diǎn)D運(yùn)動(dòng)到線段AB中點(diǎn)時(shí),E的坐標(biāo)變化情況,結(jié)合排除法可得解.

∵∠BAC=60°,∠BOA=90°
∴∠ABO=30°
又∵B0,3),C3,0
OB=3OC=3,從而ABC為等邊三角形
設(shè)OA=x,則AB=2x
x2+(3)2=4x2
解得x=3,即OA=3
AB=6
∵以CD為邊作等邊CDE
∴當(dāng)點(diǎn)D與點(diǎn)A重合時(shí),點(diǎn)E與點(diǎn)B重合,此時(shí)a=-3,b=0m=0,n=3 當(dāng)點(diǎn)D沿著射線AB方向移動(dòng)時(shí),b變大,顯然m也變大,故排除A,但m是否一直變大尚不確定;
假設(shè)當(dāng)點(diǎn)D運(yùn)動(dòng)到線段AB中點(diǎn)時(shí),由等腰三角形的三線合一性質(zhì)知CDAB,AD=3,AC=6
CD=3,∠ACD=30°
∴∠ACE=90°
n=3

此時(shí)n的值與點(diǎn)E在點(diǎn)B時(shí)的n值相同,故排除CD
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形OABC放在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)Ax軸的正半軸上,B(8,6),點(diǎn)D是射線AO上的一點(diǎn),把BAD沿直線BD折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′.

(Ⅰ)若點(diǎn)A′落在矩形的對(duì)角線OB上時(shí),OA′的長(zhǎng)=   ;

(Ⅱ)若點(diǎn)A′落在邊AB的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo);

(Ⅲ)若點(diǎn)A′落在邊AO的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了美化環(huán)境,計(jì)劃在一定的時(shí)間內(nèi)完成綠化面積萬(wàn)畝的任務(wù),后來(lái)市政府調(diào)整了原定計(jì)劃,不但綠化面積要在原計(jì)劃的基礎(chǔ)上增加,而且要提前年完成任務(wù),經(jīng)測(cè)算要完成新的計(jì)劃,平均每年的綠化面積必須比原計(jì)劃多萬(wàn)畝,求原計(jì)劃平均每年的綠化面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD中,點(diǎn)ECD上的點(diǎn)(不與CD的中點(diǎn)重合), DE=AB, ∠BAC=∠D,AD=AC

(1)求證:四邊形AECB是等腰梯形;

(2)點(diǎn)FAB 邊延長(zhǎng)線上一點(diǎn),且BC=CF .聯(lián)結(jié)CFEF,若ACEF求證:四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的半徑AB是弦,直線EF經(jīng)過(guò)點(diǎn)B,于點(diǎn)C

求證:EF的切線;

,求AB的長(zhǎng);

的條件下,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20143月,某海域發(fā)生航班失聯(lián)事件,我海事救援部門用高頻海洋探測(cè)儀進(jìn)行海上搜救,分別在A、B兩個(gè)探測(cè)點(diǎn)探測(cè)到C處是信號(hào)發(fā)射點(diǎn),已知A、B兩點(diǎn)相距400m,探測(cè)線與海平面的夾角分別是,若CD的長(zhǎng)是點(diǎn)C到海平面的最短距離.

問(wèn)BDAB有什么數(shù)量關(guān)系,試說(shuō)明理由;

求信號(hào)發(fā)射點(diǎn)的深度結(jié)果精確到1m,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】單位組織員工自駕游,并打算在一家租車公司租用同一品牌同款的5座或7座越野車組成一個(gè)車隊(duì).該租車公司同品牌同款的7座越野車的日租金比5座的多300元.已知該單位參加自駕游的員工共有40人,其中10人可以擔(dān)任司機(jī),但這10人中至少需要留出3人做為機(jī)動(dòng)司機(jī),以備輪換替代.

1)有人建議租85座的越野車,剛好可以載40人.他的建議合理嗎?請(qǐng)說(shuō)明理由;

2)請(qǐng)為該單位設(shè)計(jì)一種租車方案,使車隊(duì)租車的日租金最少,并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作:將一把三角尺放在邊長(zhǎng)為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng),直角的一邊始終經(jīng)過(guò)點(diǎn)B,另一邊與射線DC相交于點(diǎn)Q,設(shè)A、P兩點(diǎn)間的距離為x

探究:

1)當(dāng)點(diǎn)Q在邊CD上時(shí),線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察到的結(jié)論;

2)當(dāng)點(diǎn)Q在邊CD上時(shí),設(shè)四邊形PBCQ的面積為y,求yx之間的函數(shù)關(guān)系式,并寫出x的取值范圍;(3)當(dāng)點(diǎn)P在線段AC上滑動(dòng)時(shí),△PCQ是否能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點(diǎn)Q的位置,并求出相應(yīng)x的值;如果不可能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

1

2.

查看答案和解析>>

同步練習(xí)冊(cè)答案