【題目】如圖,△ABC為等邊三角形,以邊BC為直徑的半圓與邊AB,AC分別交于D,F兩點(diǎn),過點(diǎn)DDE⊥AC,垂足為點(diǎn)E

1)判斷DE⊙O的位置關(guān)系,并證明你的結(jié)論;

2)過點(diǎn)FFH⊥BC,垂足為點(diǎn)H,若AB=4,求FH的長(zhǎng)(結(jié)果保留根號(hào)).

【答案】1DE⊙O的切線;(2

【解析】

試題(1)連接OD,根據(jù)等邊三角形的性質(zhì)得出AB=BC,∠B=∠C=60°,從而得出△OBD是等邊三角形,∠BOD=∠C,再證OD∥AC,得出DE⊥OD,即可得出結(jié)論;

2)先證明△OCF是等邊三角形,得出CF=OC=2,再利用三角函數(shù)即可求出FH

試題解析:(1DE⊙O的切線;理由如下:

連接OD,如圖1所示:∵△ABC是等邊三角形,∴AB=BC=AC,∠B=∠C=60°∵OB=OD,∴△OBD是等邊三角形,∴∠BOD=60°,∴∠BOD=∠C,∴OD∥AC∵DE⊥AC,∴DE⊥OD∴DE⊙O的切線;

2)連接OF,如圖2所示:∵OC=OF,∠C=60°∴△OCF是等邊三角形,∴CF=OC=BC=AB=2∵FH⊥BC,∴∠FHC=90°,∴FH=CFsin∠C=2×=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,剪兩張對(duì)邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是( 。

A. ABC=ADC,BAD=BCD B. AB=BC

C. AB=CD,AD=BC D. DAB+BCD=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,菱形ABCD中,E、F分別是CDCB上的點(diǎn),且CECF

(1)求證:△ABE≌△ADF

(2)若菱形ABCD中,AB4,∠C120°,∠EAF60°,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市教育局為了了解初二學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),隨機(jī)抽查本市部分初二學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖(如圖)

請(qǐng)你根據(jù)圖中提供的信息,回答下列問題:

1a= ;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)求實(shí)踐天數(shù)為5天對(duì)應(yīng)扇形的圓心角度數(shù);

4)如果該市有初二學(xué)生20000人,請(qǐng)你估計(jì)活動(dòng)時(shí)間不少于5的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=kx(k≠0)經(jīng)過點(diǎn)(12,﹣5),將直線向上平移m(m>0)個(gè)單位,若平移后得到的直線與半徑為6的⊙O相交(點(diǎn)O為坐標(biāo)原點(diǎn)),則m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)P(2,)作x軸的平行線交y軸于點(diǎn)A,交雙曲線于點(diǎn)N,作PM⊥AN交雙曲線于點(diǎn)M,連接AM,若PN=4.

(1)求k的值;

(2)設(shè)直線MN解析式為y=ax+b,求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時(shí).

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB為直徑作半圓O,點(diǎn)C是半圓上一點(diǎn),∠ABC的平分線交⊙OE,DBE延長(zhǎng)線上一點(diǎn),且∠DAE=∠FAE

1)求證:AD為⊙O切線;

2)若sinBAC,求tanAFO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yx+4的圖象與反比例函數(shù)y(k為常數(shù)且k0)的圖象交于A(1,a),B兩點(diǎn),與x軸交于點(diǎn)C

(1)ak的值及點(diǎn)B的坐標(biāo);

(2)若點(diǎn)Px軸上,且SACPSBOC,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案