【題目】試確定實(shí)數(shù)a的取值范圍,使不等式組 恰有兩個(gè)整數(shù)解.
【答案】解:由 >0,兩邊同乘以6得3x+2(x+1)>0,解得x>﹣ , 由x+ > (x+1)+a,兩邊同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,
∴原不等式組的解集為﹣ <x<2a.
又∵原不等式組恰有2個(gè)整數(shù)解,即x=0,1;
則2a的值在1(不含1)到2(含2)之間,
∴1<2a≤2,
∴0.5<a≤1
【解析】先求出不等式組的解集,再根據(jù)x的兩個(gè)整數(shù)解求出a的取值范圍即可.
【考點(diǎn)精析】本題主要考查了一元一次不等式組的整數(shù)解的相關(guān)知識點(diǎn),需要掌握使不等式組中的每個(gè)不等式都成立的未知數(shù)的值叫不等式組的解,一個(gè)不等式組的所有的解組成的集合,叫這個(gè)不等式組的解集(簡稱不等式組的解)才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙M經(jīng)過原點(diǎn)O(0,0),點(diǎn)A(,0)與點(diǎn)B(0,-),點(diǎn)D在劣弧上,連結(jié)BD交x軸于點(diǎn)C,且∠COD=∠CBO.
(1)求⊙M的半徑;
(2)求證:BD平分∠ABO;
(3)在線段BD的延長線上找一點(diǎn)E,使得直線AE恰為⊙M的切線,求此時(shí)點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果x=3m+1,y=2+9m,那么用x的代數(shù)式表示y為( )
A. y=2x B. y=x2 C. y=(x﹣1)2+2 D. y=x2+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩塊相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一塊繞直角頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)到△A′BC′的位置,點(diǎn)C′在AC上,A′C′與AB相交于點(diǎn)D,則C′D= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校6名教師和234名學(xué)生集體外出活動,準(zhǔn)備租用45座大車或30座小車.若租用1輛大車2輛小車共需租車費(fèi)1000元;若租用2輛大車一輛小車共需租車費(fèi)1100元.
(1)求大、小車每輛的租車費(fèi)各是多少元?
(2)若每輛車上至少要有一名教師,且總租車費(fèi)用不超過2300元,求最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小惠在紙上畫了一條數(shù)軸后,折疊紙面,使數(shù)軸上表示1的點(diǎn)與表示﹣3的點(diǎn)重合,若數(shù)軸上A,B兩點(diǎn)之間的距離為2014(A在B的左側(cè)),且A,B兩點(diǎn)經(jīng)上述折疊后重合,則A點(diǎn)表示的數(shù)為( )
A.﹣1006
B.﹣1007
C.﹣1008
D.﹣1009
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列式子從左到右的變形是因式分解的是( )
A. a2+4a-21=a(a+4)-21
B. (a-3)(a+7)=a2+4a-21
C. a2+4a-21=(a-3)(a+7)
D. a2+4a-21=(a+2)2-25
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com