【題目】如圖,弓形中,,.若點在優(yōu)弧上由點移動到點,記的內(nèi)心為,點隨點的移動所經(jīng)過的路徑長為( ).

A.B.C.D.

【答案】B

【解析】

作輔助線,先確定點I的軌跡是以點D為圓心,以OD為半徑的的長,先求半徑OD 的長,再根據(jù)弧長公式求出的長即可.

如圖,將圓補全,過點OODBC于點D,設(shè)I為△PBC的內(nèi)心,連接BI、PD、BO、CO、BD、CD、PB、PC,

DOBC,

BD=CD,∠BPD=CPD,

∵∠PBI+BPI=BID,∠DBC+CBI=IBD,∠BPD=BCD

∴∠DBI=BID,

ID=BD

∵∠BAC=60°,BC=2,

∴∠BOD=60°,△BDO是等邊三角形,

BO==2,∠BDC=120°,

BD=BO=ID=2

∴動點I到定點D的距離為2,即點I隨點P的移動所經(jīng)過的路徑長是:以點D為圓心,2為半徑的

的長為:,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是半圓的直徑,點、是半圓的三等分點,弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線yx23x軸交于AB兩點(點A在點B的右側(cè)),與y軸交于點C,連接AC.點Q是線段AC上的動點,過Q作直線lx軸,直線1與∠BAC的平分線交于點M,與∠CAx的平分線交于點N

1P是直線AC下方拋物線上一動點,連接PAPC,當(dāng)PAC的面積最大時,求PQ+AM的最小值;

2)如圖2,連接MC,NC,當(dāng)四邊形AMCN為矩形時,將AMN沿著直線AC平移得到A'M'N',邊A'M'所在的直線與y軸交于D點,若DM'N'為等腰三角形時,求OD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C90°,點OBC上一點,以點O為圓心、OB的長為半徑作圓,交BC于點F,交AB于點D,過點D作⊙O的切線,交AC于點E

1)求證:AEDE;

2)若,CF2,BF10,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】草莓是種老少皆宜的食品,深受市民歡迎.今年3月份,甲,乙兩超市分別用3000元以相同的進價購進質(zhì)量相同的草莓.甲超市銷售方案是:將草莓按大小分類包裝銷售,其中大草莓400千克,以進價的2倍價格銷售,剩下的小草莓以高于進價的10%銷售.乙超市銷售方案是:不將草莓按大小分類,直接包裝銷售,價格按甲超市大、小兩種草莓售價的平均數(shù)定價.若兩超市將草莓全部售完,其中甲超市獲利2100元(其他成本不計).

1)草莓進價為每千克多少元?

2)乙超市獲利多少元?并比較哪種銷售方式更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,的弦,是弧的中點,弦于點,交于點,過點的切線,交延長線于點,連接

1)求證:;

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于、兩點(點在點的左側(cè)),點的坐標(biāo)為,與軸交于點,作直線.動點軸上運動,過點軸,交拋物線于點,交直線于點,設(shè)點的橫坐標(biāo)為

1)直接寫出拋物線的解析式__________和直線的解析式_________;

2)當(dāng)點在線段上運動時,直接寫出線段長度的最大值_________;

3)當(dāng)點在線段上運動時,若是以為腰的等腰直角三角形時,求的值;

4)當(dāng)以、、、為頂點的四邊形是平行四邊形時,求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)上購物已經(jīng)成為人們常用的一種購物方式,售后評價特別引人關(guān)注,消費者在網(wǎng)店購買某種商品后,對其有“好評”、“中評”、“差評”三種評價,假設(shè)這三種評價是等可能的.

1)小明對一家網(wǎng)店銷售某種商品顯示的評價信息進行了統(tǒng)計,并列出了兩幅不完整的統(tǒng)計圖.利用圖中所提供的信息解決以下問題:

①小明一共統(tǒng)計了多少個評價;

②請將圖1補充完整;

③求出圖2中“差評”所在扇形圓心角的度數(shù).

2)若甲、乙兩名消費者在該網(wǎng)店購買了同一商品,請你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個給“好評”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB兩地之間的路程為3000m,甲、乙兩人分別從A、B兩地同時出發(fā),相向而行,甲到B地停止,乙到A地停止,出發(fā)10分鐘后,甲原路原速返回A地取重要物品,取到該物品后立即原路原速前往B地(取物品的時間忽略不計),結(jié)果到達B地的時間比乙到達A地的時間晚,在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程ym)與甲運動的時間xmin)之間的關(guān)系如圖所示,則乙到達A地時,甲與B地相距的路程是_____m

查看答案和解析>>

同步練習(xí)冊答案