【題目】如圖1,△ABC為等腰直角三角形,∠ACB=90,F是AC邊上的一個動點(點F與A. C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD.
(1)猜想圖1中線段BF、AD的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論;
(2)將圖1中的正方形CDEF,繞著點C按順時針方向旋轉(zhuǎn)任意角度α,得到如圖2的情形。圖2中BF交AC于點H,交AD于點O,請你判斷(1)中得到的結(jié)論是否仍然成立,并證明你的判斷。
(3)將原題中的等腰直角三角形ABC改為直角三角形ABC,∠ACB=90,正方形CDEF改為矩形CDEF,如圖3,且AC=4,BC=3,CD=,CF=1,BF交AC于點H,交AD于點O,連接BD、AF,求BD2+AF2的值。
【答案】(1) BF=AD,BF⊥AD;(2) BF=AD,BF⊥AD仍然成立,理由見解析;(3).
【解析】分析:(1)可由SAS證得△BCF≌△ACD得到BF=AD,BF⊥AD;(2)與(1)中的方法相同;(3)證△BCF∽△ACD,得BO⊥AD,再利用勾股定理求解.
詳解:(1)BF=AD,BF⊥AD;
(2)BF=AD,BF⊥AD仍然成立,
證明:∵△ABC是等腰直角三角形,∠ACB=90,∴AC=BC,
∵四邊形CDEF是正方形,∴CD=CF,∠FCD=90,
∴∠ACB+∠ACF=∠FCD+∠ACF,即∠BCF=∠ACD,
在△BCF和△ACD中
BC=AC,∠BCF=∠ACD,CF=CD,
∴△BCF≌△ACD(SAS),∴BF=AD,∠CBF=∠CAD,
又∵∠BHC=∠AHO,∠CBH+∠BHC=90,
∴∠CAD+∠AHO=90,∴∠AOH=90,
∴BF⊥AD;
(3)證明:連接DF,
∵四邊形CDEF是矩形,∴∠FCD=90,
又∵∠ACB=90,∴∠ACB=∠FCD
∴∠ACB+∠ACF=∠FCD+∠ACF,即∠BCF=∠ACD,
∵AC=4,BC=3,CD=,CF=1,∴BC:AC=CF:CD=3:4,
∴△BCF∽△ACD,∴∠CBF=∠CAD,
又∵∠BHC=∠AHO,∠CBH+∠BHC=90
∴∠CAD+∠AHO=90,∴∠AOH=90,∴BF⊥AD,
∴∠BOD=∠AOB=90,
∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,
∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2,
∵在Rt△ABC中,∠ACB=90,AC=4,BC=3,
∴AB2=AC2+BC2=32+42=25,
∵在Rt△FCD中,∠FCD=90,CD=,CF=1,
∴DF2=CD2+CF2=()2+12=,
∴BD2+AF2=AB2+DF2=25+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A地在數(shù)軸上表示的數(shù)為-16,AB兩地相距50個單位長度.小明從A地出發(fā)去B地,以每分鐘2個單位長度的速度行進,第一次他向左1單位長度,第二次向右2單位長度,第三次再向左3單位長度,第四次又向右4單位長度…,按此規(guī)律行進.
(1)求出B地在數(shù)軸上表示的數(shù);
(2)若B地在原點的右側(cè),經(jīng)過第8次行進后小明到達點P,此時點P與點B相距幾個單位長度?8次運動完成后一共經(jīng)過了幾分鐘?
(3)若經(jīng)過n次(n為正整數(shù))行進后,小明到達點Q,請你直接寫出:點Q在數(shù)軸上表示的數(shù)應(yīng)如何表示?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于O,OE是∠AOC的平分線,OF⊥CD,OG⊥OE,∠BOD=52°.
(1)求∠AOC,∠AOF的度數(shù);
(2)求∠EOF與∠BOG是否相等?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,CD⊥AB于點D,BD=9,BC=15,AC=20.
(1)求CD的長;
(2)求AB的長;
(3)判斷△ABC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山地自行車越來越受到中學(xué)生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
A,B兩種型號車的進貨和銷售價格如下表:
A型車 | B型車 | |
進貨價格(元) | 1 100 | 1 400 |
銷售價格(元) | 今年的銷售價格 | 2 000 |
(1)今年A型車每輛售價多少元?(用列方程的方法解答)
(2)該車行計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進貨才能使這批車獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個電子廠在廣告中都聲稱他們的某種電子產(chǎn)品在正常情況下的使用壽命都是5年.質(zhì)檢部門對這兩家銷售的產(chǎn)品的使用壽命進行了跟蹤調(diào)查,統(tǒng)計結(jié)果如下:(單位:年)
甲廠:3,4,5,6,7 乙廠:4,4,5,6,6
(1)分別求出甲、乙兩廠的該種電子產(chǎn)品在正常情況下的使用壽命的平均數(shù)和方差;
(2)如果你是顧客,你會選購哪家電子廠的產(chǎn)品?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點E在CD邊上,點F在DC延長線上,AE=BF.
(1)求證:四邊形ABFE是平行四邊形;
(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某區(qū)初二年級數(shù)學(xué)學(xué)科期末質(zhì)量監(jiān)控情況,進行了抽樣調(diào)查,過程如下,請將有關(guān)問題補充完整.
收集數(shù)據(jù):隨機抽取甲乙兩所學(xué)校的20名學(xué)生的數(shù)學(xué)成績進行分析:
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述數(shù)據(jù):按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)
分段 學(xué)校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 |
|
|
|
|
|
|
|
分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
統(tǒng)計量 學(xué)校 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | m | 115.25 |
經(jīng)統(tǒng)計,表格中m的值是 .
得出結(jié)論:
a若甲學(xué)校有400名初二學(xué)生,估計這次考試成績80分以上人數(shù)為 .
b可以推斷出 學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由為 .(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com