【題目】如圖,已知在△ABC中,CD⊥AB于點D,BD=9,BC=15,AC=20.
(1)求CD的長;
(2)求AB的長;
(3)判斷△ABC的形狀.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像分別與x軸、y軸交于點A、B,以線段AB為腰在第二象限內(nèi)作等腰Rt△ABC,∠BAC=90°.
(1)直接寫出A、B兩點的坐標,并求線段AB的長;
(2)求過B、C兩點的直線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,點A(1,1),B(3,1),C(3,2),反比例函數(shù)y= (x>0)的圖象經(jīng)過點D,且與AB相交于點E,
(1)求反比例函數(shù)的解析式;
(2)過點C、E作直線,求直線CE的解析式;
(3)如圖2,將矩形ABCD沿直線CE平移,使得點C與點E重合,求線段BD掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.
(1)試說明DF是⊙O的切線;
(2)若AC=3AE,求tanC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點O為直線AB上一點,將直角三角板MON的直角頂點放在點O處,并在∠MON內(nèi)部作射線OC.
(1)將三角板放置到如圖所示位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度數(shù);
(2)若仍將三角板按照如圖所示的方式放置,僅滿足OC平分∠MOB,試猜想∠AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】身高1.65米的兵兵在建筑物前放風箏,風箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點B處,風箏掛在建筑物上方的樹枝點G處(點G在FE的延長線上).經(jīng)測量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風箏所在點G與建筑物頂點D及風箏線在手中的點A在同一條直線上,點A距地面的高度AB=1.4米,風箏線與水平線夾角為37°.
(1)求風箏距地面的高度GF;
(2)在建筑物后面有長5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計算說明:若兵兵充分利用梯子和一根米長的竹竿能否觸到掛在樹上的風箏?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC為等腰直角三角形,∠ACB=90,F是AC邊上的一個動點(點F與A. C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD.
(1)猜想圖1中線段BF、AD的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論;
(2)將圖1中的正方形CDEF,繞著點C按順時針方向旋轉(zhuǎn)任意角度α,得到如圖2的情形。圖2中BF交AC于點H,交AD于點O,請你判斷(1)中得到的結(jié)論是否仍然成立,并證明你的判斷。
(3)將原題中的等腰直角三角形ABC改為直角三角形ABC,∠ACB=90,正方形CDEF改為矩形CDEF,如圖3,且AC=4,BC=3,CD=,CF=1,BF交AC于點H,交AD于點O,連接BD、AF,求BD2+AF2的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是用棋子擺成的“H”.
(1)擺成第一個“H”需要_____個棋子,第二個“H”需要棋子_____個;
(2)按這樣的規(guī)律擺下去,擺成第10個“H”需要_____個棋子…擺成第2019個“H”需要_____個棋子.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明練習跳繩,以1分鐘跳165個為目標,并把20次1分鐘跳繩的數(shù)記錄如表(超過165個的部分記為“+”,少于165個的部分記為“-”)
與目標數(shù)量的差值 (單位:個) | -12 | -6 | -2 | +5 | +11 |
次數(shù) | 3 | 5 | 4 | 6 | 2 |
(1)小明在這20次跳繩練習中,1分鐘最多跳個?
(2)小明在這20次跳繩練習中,1分鐘跳繩個數(shù)最多的一次比最少的一次多個?
(3)小明在這20次跳繩練習中,累計跳繩多少個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com