【題目】觀察下列等式:
2+22=23﹣2;
2+22+23=24﹣2;
2+22+23+24=25﹣2;
2+22+23+24+25=26﹣2;
…
已知按一定規(guī)律排列的一組數(shù):220,221,222,223,224,…,238,239,240,若220=m,則220+221+222+223+224+…+238+239+240=_____(結(jié)果用含m的代數(shù)式表示).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,對角線相交于點,點為線段上一點,連接,將繞點順時針旋轉(zhuǎn)得到,連接交于點.
(1)若,求的面積;
(2)如圖2,線段的延長線交于點,過點作于點,求證:;
(3)如圖3,點為射線上一點,線段的延長線交直線于點,交直線于點,過點作垂直直線于點,請直接寫出線段的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個矩形紙片,將該紙片放置在平面直角坐標(biāo)系中,點,點,點P為邊上的動點.
(1)如圖①,經(jīng)過點O、P折疊該紙片,得點和折痕.當(dāng)點P的坐標(biāo)為時,求的度數(shù);
(2)如圖②,當(dāng)點P與點C重合時,經(jīng)過點O、P折疊紙片,使點B落在點的位置,與交于點M,求點M的坐標(biāo);
(3)過點P作直線,交于點Q,再取中點T,中點N,分別以,,,為折痕,依次折疊該紙片,折疊后點O的對應(yīng)點與點B的對應(yīng)點恰好重合,且落在線段上,A、C的對應(yīng)點也恰好重合,也落在線段上,求此時點P的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一種升降熨燙臺如圖1所示,其原理是通過改變兩根支撐桿夾角的度數(shù)來調(diào)整熨燙臺的高度.圖2是這種升降熨燙臺的平面示意圖.AB和CD是兩根相同長度的活動支撐桿,點O是它們的連接點,OA=OC,h(cm)表示熨燙臺的高度.
(1)如圖2﹣1.若AB=CD=110cm,∠AOC=120°,求h的值;
(2)愛動腦筋的小明發(fā)現(xiàn),當(dāng)家里這種升降熨燙臺的高度為120cm時,兩根支撐桿的夾角∠AOC是74°(如圖2﹣2).求該熨燙臺支撐桿AB的長度(結(jié)果精確到lcm).
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與坐標(biāo)軸分別相交于點A、B,點C在線段AO上,點D在線段AB上,且AC=AD.將△ACD沿直線CD翻折得到△ECD.
(1)求AB的長;
(2)求證:四邊形ACED是菱形;
(3)設(shè)點C的坐標(biāo)為(0,),△ECD與△AOB重合部分的面積為,求關(guān)于的函數(shù)解析式,并直接寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+6經(jīng)過兩點A(﹣1,0),B(3,0),C是拋物線與y軸的交點.
(1)求拋物線的解析式;
(2)點P(m,n)在平面直角坐標(biāo)系第一象限內(nèi)的拋物線上運動,設(shè)△PBC的面積為S,求S關(guān)于m的函數(shù)表達(dá)式(指出自變量m的取值范圍)和S的最大值;
(3)點M在拋物線上運動,點N在y軸上運動,是否存在點M、點N使得∠CMN=90°,且△CMN與△OBC相似,如果存在,請求出點M和點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝公司有型童裝80件,型童裝120件,分配給下屬的“萬達(dá)”和“萬象城”兩個專賣店銷售,其中140件給萬達(dá)店,60件給萬象城店,且都能賣完,兩商店銷售這兩種童裝每件的利潤(元)如表:
型利潤(元) | 型利潤(元) | |
萬達(dá)店 | 100 | 80 |
萬象城店 | 80 | 90 |
(1)設(shè)分配給萬達(dá)店型產(chǎn)品件(),請在下表中用含的代數(shù)式填寫:
型分配量(件) | 型分配量(件) | |
萬達(dá)店 | ______ | |
萬象城店 | ______ | ______ |
若記這家服裝公司賣出這200件產(chǎn)品的總利潤為(元),求關(guān)于的函數(shù)關(guān)系.
(2)現(xiàn)要求總利潤不低于18140元,請說明有多少種不同分配方案,并寫出各種分配方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于“新冠肺炎”的發(fā)生,市場上防護(hù)口罩出現(xiàn)熱銷.某藥店第一次用2000元購進(jìn)若干個防護(hù)口罩,并按定價2.5元/個出售,很快售完由于該防護(hù)口罩暢銷,第二次購進(jìn)時,每個防護(hù)口罩的進(jìn)價比第一次的進(jìn)價提高了25%,該藥店用3000元購進(jìn)防護(hù)口罩的數(shù)量比第一次多了200個,并把定價提高20%進(jìn)行銷售.
(1)第一次購進(jìn)時,每個防護(hù)口罩的價格是多少元?
(2)第二次售出800個防護(hù)口罩時,出現(xiàn)了滯銷,該藥店打算降價售完剩余的防護(hù)口罩.那么該藥店每個防護(hù)口罩至多降價多少元出售,才能使第二次銷售的防護(hù)口罩不虧本?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com