【題目】如圖1,在正方形中,對角線相交于點,點為線段上一點,連接,將繞點順時針旋轉(zhuǎn)得到,連接交于點.
(1)若,求的面積;
(2)如圖2,線段的延長線交于點,過點作于點,求證:;
(3)如圖3,點為射線上一點,線段的延長線交直線于點,交直線于點,過點作垂直直線于點,請直接寫出線段的數(shù)量關系.
【答案】(1)5;(2)見解析;(3)
【解析】
(1)如圖1中,利用勾股定理計算CE的長,由旋轉(zhuǎn)可知△CEF是等腰直角三角形,可得結(jié)論;
(2)如圖2,過E作EN⊥AB于N,作EP⊥BC于P,證明△CPE≌△CMF(AAS),得EP=FM,由角平分線的性質(zhì)得EP=EN=FM,證明△NHE≌△MGF(AAS),得NH=MG,由△BEN是等腰直角三角形,得BN=BE,最后由線段的和可得結(jié)論;
(3)如圖3,構(gòu)建輔助線,構(gòu)建全等三角形,證明△CPE≌△FMC(AAS),得EP=CM,PC=FM,由△DPE是等腰直角三角形,得PE=PD,證明△HNE≌△GMF(AAS),由△BEN是等腰直角三角形,得BN=BE,同理可得結(jié)論.
(1)在正方形中,
(2)過點作于,于
又
是等腰直角三角形
(3)BH﹣MG=BE,理由是:
如圖3,過E作EN⊥AB于N,交CG于P,
∵EP⊥BC,FM⊥CD,AB∥CD,
∴EP⊥CD,
∴∠EPC=∠FMC=90°,
∵∠M=∠ECF=90°,
∴∠ECP+∠FCM=∠FCM+∠CFM=90°,
∴∠ECP=∠CFM,
∵CE=CF,
∴△CPE≌△FMC(AAS),
∴PC=FM,
∵△DPE是等腰直角三角形,
∴PE=PD,
∴EN=BN=PN+PE=BC+PE=CD+PD=PC=FM,
∵AB∥CD,
∴∠H=∠FGM,
∵∠ENH=∠M=90°,
∴△HNE≌△GMF(AAS),
∴NH=MG,
∴BH﹣MG=BH﹣NH=BN,
∵△BEN是等腰直角三角形,
∴BN=BE,
∴BH﹣MG=BE.
科目:初中數(shù)學 來源: 題型:
【題目】在四張大小、質(zhì)地均相同的卡片上各寫一個數(shù)字,分別為5,6,8,8,現(xiàn)將四張卡片放入一只不透明的盒子中.
(1)求這四個數(shù)字的眾數(shù);
(2)若甲抽走一張寫有數(shù)字“6”的卡片.
①剩下三張卡片的三個數(shù)字的中位數(shù)與原來四張卡片的四個數(shù)字的中位數(shù)是否相同?并說明理由;
②攪勻后乙準備從剩余的三張卡片中隨機抽取一張卡片,記下數(shù)字后放回,攪勻后再任意抽取一張,記下數(shù)字.求兩次摸到不同數(shù)字卡片的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的個主題進行了抽樣調(diào)查(每位同學只選最關注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應的圓心角的度數(shù).
(3)如果要在這個主題中任選兩個進行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學生關注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為加快5G網(wǎng)絡建設,某通信公司在一個坡度i=1:2.4的山坡AB上建了一座信號塔CD,信號塔底端C到山腳A的距離AC=13米,在距山腳A水平距離18米的E處,有一高度為10米的建筑物EF,在建筑物頂端F處測得信號塔頂端D的仰角為37°(信號塔及山坡的剖面和建筑物的剖面在同一平面上),則信號塔CD的高度約是( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.22.5米B.27.5米C.32.5米D.45.0米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為提高學生體考成績,對全校300名九年級學生進行一分種跳繩訓練.為了解學生訓練效果,學校體育組在九年級上學期開學初和學期末分別對九年級學生進行一分種跳繩測試,學生成績均為整數(shù),滿分20分,大于18分為優(yōu)秀.現(xiàn)隨機抽取了同一部分學生的兩次成績進行整理、描述和分析.(成績得分用x表示,共分成五組:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)
開學初抽取學生的成績在D組中的數(shù)據(jù)是:17,17,17,17,17,18,18.
學期末抽取學生成績統(tǒng)計表
學生成績 | A組 | B組 | C組 | D組 | E組 |
人數(shù) | 0 | 1 | 4 | 5 | a |
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
開學初抽取學生成績 | 16 | b | 17 |
學期末抽取學生成績 | 18 | 18.5 | 19 |
根據(jù)以上信息,解答下列問題:
(1)直接寫出圖表中a、b的值,并補全條形統(tǒng)計圖;
(2)假設該校九年級學生都參加了兩次測試,估計該校學期末成績優(yōu)秀的學生人數(shù)比開學初成績優(yōu)秀的學生人數(shù)增加了多少?
(3)小莉開學初測試成績16分,學期末測試成績19分,根據(jù)抽查的相關數(shù)據(jù),請選擇一個合適的統(tǒng)計量評價小莉的訓練效果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,,,斜邊,將繞點順時針旋轉(zhuǎn),如圖1,連接.
(1)填空: ;
(2)如圖1,連接,作,垂足為,求的長度;
(3)如圖2,點,同時從點出發(fā),在邊上運動,沿路徑勻速運動,沿路徑勻速運動,當兩點相遇時運動停止,已知點的運動速度為1.5單位秒,點的運動速度為1單位秒,設運動時間為秒,的面積為,求當為何值時取得最大值?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,將△ABC沿直線AB翻折得到△ABD,連接CD交AB于點M.E是線段CM上的點,連接BE.F是△BDE的外接圓與AD的另一個交點,連接EF,BF,
(1)求證:△BEF是直角三角形;
(2)求證:△BEF∽△BCA;
(3)當AB=6,BC=m時,在線段CM正存在點E,使得EF和AB互相平分,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點)和點A1.
(1)畫出一個格點△A1B1C1,并使它與△ABC全等且A與A1是對應點;
(2)畫出點B關于直線AC的對稱點D,并指出AD可以看作由AB繞A點經(jīng)過怎樣的旋轉(zhuǎn)而得到的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式:
2+22=23﹣2;
2+22+23=24﹣2;
2+22+23+24=25﹣2;
2+22+23+24+25=26﹣2;
…
已知按一定規(guī)律排列的一組數(shù):220,221,222,223,224,…,238,239,240,若220=m,則220+221+222+223+224+…+238+239+240=_____(結(jié)果用含m的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com