【題目】(2013年廣東梅州11分)用如圖①,②所示的兩個(gè)直角三角形(部分邊長及角的度數(shù)在圖中已標(biāo)出),完成以下兩個(gè)探究問題:
探究一:將以上兩個(gè)三角形如圖③拼接(BC和ED重合),在BC邊上有一動(dòng)點(diǎn)P.
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到∠CFB的角平分線上時(shí),連接AP,求線段AP的長;
(2)當(dāng)點(diǎn)P在運(yùn)動(dòng)的過程中出現(xiàn)PA=FC時(shí),求∠PAB的度數(shù).
探究二:如圖④,將△DEF的頂點(diǎn)D放在△ABC的BC邊上的中點(diǎn)處,并以點(diǎn)D為旋轉(zhuǎn)中心旋轉(zhuǎn)△DEF,使△DEF的兩直角邊與△ABC的兩直角邊分別交于M、N兩點(diǎn),連接MN.在旋轉(zhuǎn)△DEF的過程中,△AMN的周長是否存在有最小值?若存在,求出它的最小值;若不存在,請(qǐng)說明理由.
【答案】解:探究一:
(1)依題意畫出圖形,如答圖1所示:
由題意,得∠CFB=60°,F(xiàn)P為角平分線,
則∠CFP=30°。
∴CF=BCsin30°=3×=。
∴CP=CFtan∠CFP=×=1。
過點(diǎn)A作AG⊥BC于點(diǎn)G,則AG=BC=,
∴PG=CG﹣CP=﹣1=。
在Rt△APG中,由勾股定理得:。
(2)由(1)可知,F(xiàn)C=.
如答圖2所示,以點(diǎn)A為圓心,以FC=長為半徑畫弧,與BC交于點(diǎn)P1、P2,則AP1=AP2=。
過點(diǎn)A過AG⊥BC于點(diǎn)G,則AG=BC=,
在Rt△AGP1中,,∴∠P1AG=30°。
∴∠P1AB=45°﹣30°=15°。
同理求得,∠P2AG=30°,∠P2AB=45°+30°=75°。
∴∠PAB的度數(shù)為15°或75°。
探究二:△AMN的周長存在有最小值。
如答圖3所示,連接AD,
圖3
∵△ABC為等腰直角三角形,點(diǎn)D為斜邊BC的中點(diǎn),
∴AD=CD,∠C=∠MAD=45°。
∵∠EDF=90°,∠ADC=90°,∴∠MDA=∠NDC。
∵在△AMD與△CND中,,
∴△AMD≌△CND(ASA)。∴AM=CN。
設(shè)AM=x,則CN=x,,
在Rt△AMN中,由勾股定理得:
,
∴△AMN的周長為:AM+AN+MN= 。
當(dāng)x=時(shí),有最小值,最小值為。
∴△AMN周長的最小值為。
【解析】探究一:(1)如答圖1所示,過點(diǎn)A作AG⊥BC于點(diǎn)G,構(gòu)造Rt△APG,利用勾股定理求出AP的長度。
(2)如答圖2所示,符合條件的點(diǎn)P有兩個(gè).解直角三角形,利用特殊角的三角函數(shù)值求出角的度數(shù)。
探究二:如答圖3所示,證明△AMD≌△CND,得AM=CN,則△AMN兩直角邊長度之和為定值;設(shè)AM=x,求出斜邊MN的表達(dá)式,利用二次函數(shù)的性質(zhì)求出MN的最小值,從而得到△AMN周長的最小值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)2014教師招聘有拉開序幕,這給很多有志于教育事業(yè)的人員很多機(jī)會(huì).下面是今年報(bào)考人數(shù)統(tǒng)計(jì)表(數(shù)學(xué))
招聘崗位 | 招聘計(jì)劃 | 報(bào)考人數(shù) | |||
高中教師1 | 研究生 | 高中 | 數(shù)學(xué) | 10 | |
高中教師2 | 普通 | 高中 | 數(shù)學(xué) | 19 | |
初中教師 | 普通 | 初中 | 數(shù)學(xué) | 12 | 55 |
小學(xué)教師1 | 普通 | 城區(qū)與八鎮(zhèn) | 數(shù)學(xué) | 18 | 83 |
小學(xué)教師2 | 普通 | 其他 | 數(shù)學(xué) | 21 | 93 |
(1)根據(jù)上表信息,請(qǐng)制作補(bǔ)完下面的扇形統(tǒng)計(jì)圖和上述表格.
(2)錄取比例最小的是多少?最大的是多少?
(3)如果是你(本科畢業(yè)),僅從錄取比例上看,你會(huì)選擇報(bào)考哪個(gè)崗位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某演唱會(huì)購買門票的方式有兩種.
方式一:若單位贊助廣告費(fèi)10萬元,則該單位所購門票的價(jià)格為每張0.02萬元;
方式二:如圖所示.
設(shè)購買門票x張,總費(fèi)用為y萬元,方式一中:總費(fèi)用=廣告贊助費(fèi)+門票費(fèi).
(1)求方式一中y與x的函數(shù)關(guān)系式.
(2)若甲、乙兩個(gè)單位分別采用方式一、方式二購買本場(chǎng)演唱會(huì)門票共400張,且乙單位購買超過100張,兩單位共花費(fèi)27.2萬元,求甲、乙兩單位各購買門票多少張?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接BE,CD,點(diǎn)M,N,P分別是BE,CD,BC的中點(diǎn),連接DE,PM,PN,MN.
(1)觀察猜想,如圖中ΔPMN是_______(填特殊三角形的名稱)
(2)探究證明,如圖,ΔADE繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),則ΔPMN的形狀是否發(fā)生改變?并就如圖說明理由.
(3)拓展延伸,若ΔADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),AD=2,AB=6,請(qǐng)直接寫出ΔPMN的周長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:
根據(jù)圖中提供的信息,解答下列問題:
(1)補(bǔ)全頻數(shù)分布直方圖
(2)求扇形統(tǒng)計(jì)圖中m的值和E組對(duì)應(yīng)的圓心角度數(shù)
(3)請(qǐng)估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校積極參與垃圾分類活動(dòng),以班級(jí)為單位收集可回收的垃圾,下面是七年級(jí)各班一周收集的可回收垃圾的質(zhì)量頻數(shù)表和頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).
某校七年級(jí)各班一周收集的可回收垃圾的質(zhì)量頻數(shù)表
組別(kg) | 頻數(shù) |
4.0~4.5 | 2 |
4.5~5.0 | a |
5.0~5.5 | 3 |
5.5~6.0 | 1 |
(1)求a的值;
(2)已知收集的可回收垃圾以0.8元/kg被回收,該年級(jí)這周收集的可回收垃圾被回收后所得的金額能否達(dá)到50元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米
其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點(diǎn)E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵(lì)居民節(jié)約用水,采用分段計(jì)費(fèi)的方法按月計(jì)算每戶家庭的水費(fèi),月用水量不超過20時(shí),按2元/計(jì)費(fèi);月用水量超過20時(shí),其中的20仍按2元/收費(fèi),超過部分按元/計(jì)費(fèi).設(shè)每戶家庭用用水量為時(shí),應(yīng)交水費(fèi)元.
(1)分別求出和時(shí)與的函數(shù)表達(dá)式;
(2)小明家第二季度交納水費(fèi)的情況如下:
月份 | 四月份 | 五月份 | 六月份 |
交費(fèi)金額 | 30元 | 34元 | 42.6元 |
小明家這個(gè)季度共用水多少立方米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com