【題目】某區(qū)2014教師招聘有拉開序幕,這給很多有志于教育事業(yè)的人員很多機(jī)會(huì).下面是今年報(bào)考人數(shù)統(tǒng)計(jì)表(數(shù)學(xué))

招聘崗位

招聘計(jì)劃

報(bào)考人數(shù)

高中教師1

研究生

高中

數(shù)學(xué)

10

高中教師2

普通

高中

數(shù)學(xué)

19

初中教師

普通

初中

數(shù)學(xué)

12

55

小學(xué)教師1

普通

城區(qū)與八鎮(zhèn)

數(shù)學(xué)

18

83

小學(xué)教師2

普通

其他

數(shù)學(xué)

21

93

1)根據(jù)上表信息,請制作補(bǔ)完下面的扇形統(tǒng)計(jì)圖和上述表格.

2)錄取比例最小的是多少?最大的是多少?

3)如果是你(本科畢業(yè)),僅從錄取比例上看,你會(huì)選擇報(bào)考哪個(gè)崗位?

【答案】1)見解析,3,6;(2)錄取比例最小的是小學(xué)教師1,最大的是高中教師2;(3)高中教師2

【解析】

1)根據(jù)初中教師的招聘計(jì)劃和所占的百分比求出招聘總?cè)藬?shù),再分別乘以所占的百分比求出高中教師1和高中教師2的人數(shù),用各部分的招聘計(jì)劃除以總招聘人數(shù)求出所占的百分比,然后補(bǔ)全統(tǒng)計(jì)圖即可;

2)根據(jù)招聘計(jì)劃和所報(bào)人數(shù)解答;

3)根據(jù)各崗位的錄取比例選擇即可.

解:(1)招聘總計(jì)劃為:12÷20%=60,

高中教師160×5%=3,

高中教師260×10%=6,

小學(xué)教師1×100%=30%,

小學(xué)教師2×100%=35%;

依次填入:3,6;

2)高中教師1×100%=30%,

高中教師2×100%≈31.58%,

初中教師:×100%≈21.82%,

小學(xué)教師1×100%≈21.69%,

小學(xué)教師2,為×100%≈22.58%;

所以,錄取比例最小的是小學(xué)教師1

最大的是高中教師2;

3)高中教師2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一只拉桿式旅行箱(圖1),其側(cè)面示意圖如圖2所示.已知箱體長AB=50cm,拉桿的伸長距離最大時(shí)可達(dá)35cm,點(diǎn)A,BC在同一條直線上.在箱體底端裝有圓形的滾輪⊙A,⊙A與水平地面MN相切于點(diǎn)D.在拉桿伸長至最大的情況下,當(dāng)點(diǎn)B距離水平地面38cm時(shí),點(diǎn)C到水平地面的距離CE為59cm.

設(shè)AFMN

(1)求⊙A的半徑長;

(2)當(dāng)人的手自然下垂拉旅行箱時(shí),人感到較為舒服.某人將手自然下垂在C端拉旅行箱時(shí),CE為80cm,=64°.求此時(shí)拉桿BC的伸長距離.(精確到1cm,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在奉賢創(chuàng)建文明城區(qū)的活動(dòng)中,有兩段長度相等的彩色道磚鋪設(shè)任務(wù),分別交給甲、乙兩個(gè)施工隊(duì)同時(shí)進(jìn)行施工.如圖是反映所鋪設(shè)彩色道磚的長度y(米)與施工時(shí)間x(時(shí))之間關(guān)系的部分圖象.請解答下列問題:

1)求乙隊(duì)在2≤x≤6的時(shí)段內(nèi),yx之間的函數(shù)關(guān)系式;

2)如果甲隊(duì)施工速度不變,乙隊(duì)在開挖6小時(shí)后,施工速度增加到12/時(shí),結(jié)果兩隊(duì)同時(shí)完成了任務(wù).求甲隊(duì)從開始施工到完工所鋪設(shè)的彩色道磚的長度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A1,1),B4,0),C44).

1)按下列要求作圖:

①將△ABC向左平移4個(gè)單位,得到△A1B1C1

②將△A1B1C1繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)90°,得到△A2B2C2

2)求點(diǎn)C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(3y1),B(2,y2)均在拋物線yax2+bx+c上,點(diǎn)P(mn)是該拋物線的頂點(diǎn),若y1y2n,則m的取值范圍是(  )

A.3m2B.m-C.m>﹣D.m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB5,過點(diǎn)BBDAB,點(diǎn)C,D都在AB上方,AD交△BCD的外接圓⊙O于點(diǎn)E

1)求證:∠CAB=∠AEC

2)若BC3

ECBD,求AE的長.

②若△BDC為直角三角形,求所有滿足條件的BD的長.

3)若BCEC ,則   .(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從一架水平飛行的無人機(jī)的尾端點(diǎn)測得正前方的橋的左端點(diǎn)俯角為,且,無人機(jī)的飛行高度米,橋的長度1255.

1)求點(diǎn)到橋左端點(diǎn)的距離;

2)若從無人機(jī)前端點(diǎn)測得正前方的橋的右端點(diǎn)的俯角為,求這架無人機(jī)的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸,軸分別交于點(diǎn),經(jīng)過點(diǎn)的拋物線軸的另一個(gè)交點(diǎn)為點(diǎn),點(diǎn)是拋物線上一點(diǎn),過點(diǎn)軸于點(diǎn),連接,設(shè)點(diǎn)的橫坐標(biāo)為.

求拋物線的解析式;

當(dāng)點(diǎn)在第三象限,設(shè)的面積為,求的函數(shù)關(guān)系式,并求出的最大值及此時(shí)點(diǎn)的坐標(biāo);

連接,若,請直接寫出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2013年廣東梅州11分)用如圖,所示的兩個(gè)直角三角形(部分邊長及角的度數(shù)在圖中已標(biāo)出),完成以下兩個(gè)探究問題:

探究一:將以上兩個(gè)三角形如圖拼接(BC和ED重合),在BC邊上有一動(dòng)點(diǎn)P.

(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到CFB的角平分線上時(shí),連接AP,求線段AP的長;

(2)當(dāng)點(diǎn)P在運(yùn)動(dòng)的過程中出現(xiàn)PA=FC時(shí),求PAB的度數(shù).

探究二:如圖,將DEF的頂點(diǎn)D放在ABC的BC邊上的中點(diǎn)處,并以點(diǎn)D為旋轉(zhuǎn)中心旋轉(zhuǎn)DEF,使DEF的兩直角邊與ABC的兩直角邊分別交于M、N兩點(diǎn),連接MN.在旋轉(zhuǎn)DEF的過程中,AMN的周長是否存在有最小值?若存在,求出它的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案