如圖,在四邊形ABCD中,ABCD,AB = CD,AB = kBC,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且∠BAP =∠BCP,連結(jié)PB、PD.猜想∠ABP與∠ADP的關(guān)系,并證明.

說明:如果你經(jīng)過反復(fù)探索沒有解決問題,可以補(bǔ)充條件k = 1.在補(bǔ)充條件后,先畫圖,再完成上面的問題,最多可得7分.

結(jié)論:∠ABP =ADP.(說明:結(jié)論1分,但不重復(fù)得分)                       

證明:如圖1,過點(diǎn)PPEADABEGHABBC、ADG、H

ABCD,AB=CD,∴四邊形ABCD是平行四邊形.

ADBCPEABCDGH

∴∠PEA=∠ABC=∠PGC,∠PEB=∠BAD=∠PHD

∵∠BAP=∠BCP,∠PEA=∠PGC,

∴△PAE∽△PCG

, ∵四邊形AEPHBGPE、CDHG都是平行四邊形,

AEPH,BEPGDHCG

又∵∠PEB=∠PHD,

∴△PBE∽△PDH

∴∠ABP=∠ADP.補(bǔ)充條件:

結(jié)論:∠ABP =ADP.(說明:結(jié)論1分,但不重復(fù)得分)

畫出草圖,如圖2.

證明:∵AB∥CD,AB=CD,∴四邊形ABCD是平行四邊形.

AB=BCABBC

∴平行四邊形ABCD是菱形.

ABBCCDAD,∠ABC=∠ADC

連接AC

ABBC,∴∠BAC=∠BCA

∵∠BAP=∠BCP,

∴∠CAP=∠ACP,∴APCPBPBP,∴△PAB≌△PCB,

∴∠ABP=∠CBPABC

ADCD,APCP,DPDP,

∴△PAD≌△PCD

∴∠ADP=∠CDPADC,∴∠ABP=∠ADP

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案