【題目】小明嘗試著將矩形紙片ABCD(如圖①,AD>CD)沿過A點的直線折疊,使得B點落在AD邊上的點F處,折痕為AE(如圖②);再沿過D點的直線折疊,使得C點落在DA邊上的點N處,E點落在AE邊上的點M處,折痕為DG(如圖③).如果第二次折疊后,M點正好在∠NDG的平分線上,那么矩形ABCD的長BC與寬AB的關系是( )
A.BC=2AB
B.BC= AB
C.BC=1.5AB
D.BC= AB
【答案】D
【解析】解:連接DE,如圖,
∵沿過A點的直線折疊,使得B點落在AD邊上的點F處,
∴四邊形ABEF為正方形,
∴∠EAD=45°,
由第二次折疊知,M點正好在∠NDG的平分線上,
∴DE平分∠GDC,Rt△DGE≌Rt△DCE,
∴DC=DG,
又∵△AGD為等腰直角三角形,
∴AD= DG= CD,
∴BC= AB.
故選:D.
【考點精析】本題主要考查了矩形的性質和翻折變換(折疊問題)的相關知識點,需要掌握矩形的四個角都是直角,矩形的對角線相等;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖①,E是直線AB,CD內部一點,AB∥CD,連接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,則∠AED=
②猜想圖①中∠AED,∠EAB,∠EDC的關系,并用兩種不同的方法證明你的結論.
(2)拓展應用:
如圖②,射線FE與l1 , l2交于分別交于點E、F,AB∥CD,a,b,c,d分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關系(任寫出兩種,可直接寫答案).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 已知點A的坐標為(m,0)點B的坐標為(,0),在x軸上方取點C,使CB⊥x軸,且CB=2AO,點C, 關于直線對稱, 交直線于點E若△BOE的面積為4,則點E的坐標為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中E是BC上的一點,EC=2BE,點D是AC的中點,設△ABC,△ADF,△BEF的面積分別為S△ABC , S△ADF , S△BEF , 且S△ABC=12,則S△ADF﹣S△BEF= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列從左到右邊的變形,是因式分解的是( )
A、(3﹣x)(3+x)=9﹣x2
B、(y+1)(y﹣3)=﹣(3﹣y)(y+1)
C、4yz﹣2y2z+z=2y(2z﹣yz)+z
D、﹣8x2+8x﹣2=﹣2(2x﹣1)2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com