【題目】如圖所示,將△ABC沿著某一方向平移一定的距離得到△MNL,則下列結論中正確的有( )
①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL。
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應點.
(1)請畫出平移后的△A′B′C′,并求△A′B′C′的面積;
(2)若連接AA′,CC′,則這兩條線段之間的關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】是某汽車行駛的路程S(km)與時間t(min)的函數(shù)關系圖.觀察圖中所提供的信息,解答下列問題:
(1)汽車在前9分鐘內的平均速度是多少?
(2)汽車在中途停了多長時間?
(3)當16≤t≤30時,求S與t的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地為了鼓勵居民節(jié)約用水,決定實行兩級收費制,即每月用水量不超過15噸(含15噸)時,每噸按政府補貼優(yōu)惠價收費;每月超過15噸時,超過部分每噸按市場調節(jié)價收費.小明家1月份用水23噸,交水費35元,2月份用水19噸,交水費25元.
(1)求每噸水的政府補貼優(yōu)惠價與市場調節(jié)價分別是多少;
(2)小明家3月份用水24噸,他家應交水費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線C:y=x2經(jīng)過變化可得到拋物線C1:y1=a1x(x﹣b1),C1與x軸的正半軸交與點A1 , 且其對稱軸分別交拋物線C,C1于點B1 , D1 , 此時四邊形OB1A1D1恰為正方形;按上述類似方法,如圖2,拋物線C1:y1=a1x(x﹣b1)經(jīng)過變換可得到拋物線C2:y2=a2x(x﹣b2),C2與x軸的正半軸交與點A2 , 且其對稱軸分別交拋物線C1 , C2于點B2 , D2 , 此時四邊形OB2A2D2也恰為正方形;按上述類似方法,如圖3,可得到拋物線C3:y3=a3x(x﹣b3)與正方形OB3A3D3 . 請?zhí)骄恳韵聠栴}:
(1)填空:a1= , b1=;
(2)求出C2與C3的解析式;
(3)按上述類似方法,可得到拋物線Cn:yn=anx(x﹣bn)與正方形OBnAnDn(n≥1).
①請用含n的代數(shù)式直接表示出Cn的解析式;
②當x取任意不為0的實數(shù)時,試比較y2015與y2016的函數(shù)值的大小并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,HG=24cm,MG=8cm,MC=6cm,則陰影部分的面積是____cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:
(1)如果∠1=∠B,那么_______∥_______,根據(jù)是__________________________;
(2)如果∠3=∠D,那么_______∥_______,根據(jù)是__________________________;
(3)如果要使BE∥DF,必須∠1=∠_______,根據(jù)是_________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過程,請?zhí)羁?/span>.
解:∵OA⊥OB(已知)
所以_____=90°(________)
因為_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,
所以______=_____(等量代換)
所以______=90°
所以OC⊥OD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com