【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,HG=24cm,MG=8cm,MC=6cm,則陰影部分的面積是____cm2.

【答案】168

【解析】

根據(jù)平移的性質(zhì)得HGCD=24,則DMDCMC=18,由于S陰影部分S梯形EDMFS梯形DHGMS梯形EDMF,所以S陰影部分S梯形EDMF,然后根據(jù)梯形的面積公式計(jì)算.

∵直角梯形ABCD沿AD方向平移到梯形EFGH,
HGCD=24,
DMDCMC=24-6=18,
S陰影部分S梯形EDMFS梯形DHGMS梯形EDMF,
S陰影部分S梯形EDMFDMHG)×MG×(18+24)×8=168(cm2).
故答案為168.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是一個(gè)工件的平面圖,它要求AD和BC這兩邊的夾角應(yīng)等于30°.甲、乙、丙三個(gè)工人在檢驗(yàn)工件是否合格時(shí),發(fā)生了以下爭論:

甲:要檢驗(yàn)工件是否合格,應(yīng)延長AD和BC,設(shè)交點(diǎn)為O,然后檢驗(yàn)∠O是否等于30°.

乙:這樣太麻煩了,我看只需測量出∠A和∠B的度數(shù)就行了.

丙:量出∠C和∠D的度數(shù)也可以檢驗(yàn)AD和BC的夾角是否等于30°.

請你用所學(xué)過的知識,說明乙、丙兩人的方法是否正確.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知,BCOA,B=A=100°,試解答下列問題:

1)試說明:OBAC

2)如圖,若點(diǎn)EFBC上,且FOC=AOCOE平分BOF.試求EOC的度數(shù);

3)在(2)小題的條件下,若左右平行移動(dòng)AC,如圖,那么OCBOFB的比值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個(gè)比值.

4)在(3)小題的條件下,當(dāng)OEB=OCA時(shí),試求OCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若把不等式組的解集在數(shù)軸上表示出來,則其對應(yīng)的圖形為

A. 長方形 B. 線段 C. 射線 D. 直線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將△ABC沿著某一方向平移一定的距離得到△MNL,則下列結(jié)論中正確的有(  )

AMBN;AM=BN;BC=ML;④∠ACB=MNL。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將△ABC沿著某一方向平移一定的距離得到△MNL,則下列結(jié)論中正確的有(  )

AMBN;AM=BN;BC=ML;④∠ACB=MNL。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系,矩形OABC的邊OA在x軸上,邊OC在y軸上,點(diǎn)B的坐標(biāo)為(3,1),將矩形沿對角線BO翻折,C點(diǎn)落在D點(diǎn)的位置,且BD交x軸于點(diǎn)E.那么點(diǎn)D的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).

(1) 請畫出ABC向左平移5個(gè)單位長度后得到的ABC;

(2) 請畫出ABC關(guān)于原點(diǎn)對稱的ABC;

(3) 在軸上求作一點(diǎn)P,使PAB的周長最小,請畫出PAB,并直接寫P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AOB是一個(gè)直角,作射線OC,再分別作AOCBOC的平分線OD,OE

(1) 如圖1,當(dāng)BOC=70°時(shí),求DOE的度數(shù).

(2) 如圖2,當(dāng)射線OCAOB內(nèi)繞點(diǎn)O旋轉(zhuǎn)時(shí),DOE的大小是否發(fā)生變化?說明理由.

(3) 當(dāng)射線OCAOB外繞點(diǎn)O旋轉(zhuǎn)且AOC為鈍角時(shí),畫出圖形,直接寫出相應(yīng)的DOE的度數(shù).(不必寫出過程)

查看答案和解析>>

同步練習(xí)冊答案