【題目】為了慶祝中華人民共和國(guó)成立70周年,某市決定開展“我和祖國(guó)共成長(zhǎng)”主題演講比賽,某中學(xué)將參加本校選拔賽的40名選手的成績(jī)(滿分為100分,得分為正整數(shù)且無滿分,最低為75分)分成五組,并繪制了下列不完整的統(tǒng)計(jì)圖表.
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
74.5~79.5 | 2 | 0.05 |
79.5~84.5 | m | 0.2 |
84.5~89.5 | 12 | 0.3 |
89.5~94.5 | 14 | n |
94.5~99.5 | 4 | 0.1 |
(1)表中m= ,n= ;
(2)請(qǐng)?jiān)趫D中補(bǔ)全頻數(shù)直方圖;
(3)甲同學(xué)的比賽成績(jī)是40位參賽選手成績(jī)的中位數(shù),據(jù)此推測(cè)他的成績(jī)落在 分?jǐn)?shù)段內(nèi);
(4)選拔賽中,成績(jī)?cè)?/span>94.5分以上的選手,男生和女生各2人,學(xué)校從中隨機(jī)確定2名選手參加全市決賽,恰好是一名男生和一名女生的概率是 .
【答案】(1)m=8, n=0.35;(2)詳見解析;(3)84.5~89.5;(4)
【解析】
(1)根據(jù)頻率=頻數(shù)÷總數(shù)求解可得;
(2)根據(jù)所求結(jié)果即可補(bǔ)全圖形;
(3)根據(jù)中位數(shù)的概念求解可得;
(4)首先根據(jù)題意畫出樹狀圖,然后由表格即可求得所有等可能的結(jié)果與挑選的兩位學(xué)生恰好是一男一女的情況,再利用概率公式求解即可求得答案.
解:(1)m=40×0.2=8,n=14÷40=0.35,
故答案為:8,0.35;
(2)補(bǔ)全圖形如下:
(3)由于40個(gè)數(shù)據(jù)的中位數(shù)是第20、21個(gè)數(shù)據(jù)的平均數(shù),而第20、21個(gè)數(shù)據(jù)均落在84.5~89.5,
∴測(cè)他的成績(jī)落在分?jǐn)?shù)段84.5~89.5內(nèi),
故答案為:84.5~89.5.
(4)選手有4人,2名是男生,2名是女生.
,
恰好是一名男生和一名女生的概率為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)古代有著輝煌的數(shù)學(xué)成就,《周髀算經(jīng)》,《九章算術(shù)》,《海島算經(jīng)》,《孫子算經(jīng)》等是我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).
(1)小聰想從這4部數(shù)學(xué)名著中隨機(jī)選擇1部閱讀,則他選中《九章算術(shù)》的概率為 ;
(2)某中學(xué)擬從這4部數(shù)學(xué)名著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,求恰好選中《九章算術(shù)》和《孫子算經(jīng)》的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某城市綠化工程進(jìn)行招標(biāo),現(xiàn)有甲、乙兩個(gè)工程隊(duì)投標(biāo),已知甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天.經(jīng)測(cè)算:如果甲隊(duì)先做20天,再由甲隊(duì)、乙隊(duì)合作12天,那么此時(shí)共完成總工作量的.
(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?
(2)甲隊(duì)施工一天需付工程款4.5萬元,乙隊(duì)施工一天需付工程款2萬元,該工程由甲乙兩隊(duì)合作若干天后,再由乙隊(duì)完成剩余的工作,若要求完成此項(xiàng)工程的工程款不超過186萬元,求甲、乙兩隊(duì)最多合作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=-x+1的圖象與反比例函數(shù)的圖象有一個(gè)交點(diǎn)是A(-1,n).
(1)求反比例函數(shù)的解析式;
(2)M(d,),N(d,)分別是一次函數(shù)和反比例函數(shù)圖象上的兩點(diǎn),若,求d的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD,AE⊥BC交點(diǎn)E,連接DE,F(xiàn)為DE上一點(diǎn),且∠AFE=∠B=60°.
(1)求證:△ADF∽△DEC;
(2)若AE=3,AD=4,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,D,E是半圓上任意兩點(diǎn),連結(jié)AD,DE,AE與BD相交于點(diǎn)C,要使△ADC與△ABD相似,可以添加一個(gè)條件.下列添加的條件其中錯(cuò)誤的是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一段6000米的道路由甲乙兩個(gè)工程隊(duì)負(fù)責(zé)完成.已知甲工程隊(duì)每天完成的工作量是乙工程隊(duì)每天完成工作量的2倍,且甲工程隊(duì)單獨(dú)完成此項(xiàng)工程比乙工程隊(duì)單獨(dú)完成此項(xiàng)工程少用10天.
(1)求甲、乙兩工程隊(duì)每天各完成多少米?
(2)如果甲工程隊(duì)每天需工程費(fèi)7000元,乙工程隊(duì)每天需工程費(fèi)5000元,若甲隊(duì)先單獨(dú)工作若干天,再由甲乙兩工程隊(duì)合作完成剩余的任務(wù),支付工程隊(duì)總費(fèi)用不超過79000元,則兩工程隊(duì)最多可以合作施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“凈揚(yáng)”水凈化有限公司用160萬元,作為新產(chǎn)品的研發(fā)費(fèi)用,成功研制出了一種市場(chǎng)急需的小型水凈化產(chǎn)品,已于當(dāng)年投入生產(chǎn)并進(jìn)行銷售.已知生產(chǎn)這種小型水凈化產(chǎn)品的成本為4元/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量(萬件)與銷售價(jià)格x(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,BC為一次函數(shù)圖象的一部分.設(shè)公司銷售這種水凈化產(chǎn)品的年利潤(rùn)為z(萬元).(注:若上一年盈利,則盈利不計(jì)入下一年的年利潤(rùn);若上一年虧損,則虧損計(jì)作下一年的成本.)
(1)請(qǐng)求出y(萬件)與x(元/件)之間的函數(shù)關(guān)系式;
(2)求出第一年這種水凈化產(chǎn)品的年利潤(rùn)z(萬元)與x(元/件)之間的函數(shù)關(guān)系式,并求出第一年年利潤(rùn)的最大值;
(3)假設(shè)公司的這種水凈化產(chǎn)品第一年恰好按年利潤(rùn)z(萬元)取得最大值時(shí)進(jìn)行銷售,現(xiàn)根據(jù)第一年的盈虧情況,決定第二年將這種水凈化產(chǎn)品每件的銷售價(jià)格x(元)定在8元以上(),當(dāng)?shù)诙甑哪昀麧?rùn)不低于103萬元時(shí),請(qǐng)結(jié)合年利潤(rùn)z(萬元)與銷售價(jià)格x(元/件)的函數(shù)示意圖,求銷售價(jià)格x(元/件)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),的邊垂直軸于點(diǎn),反比例函數(shù)的圖象經(jīng)過的中點(diǎn),與邊相交于點(diǎn),.
(1)求反比例函數(shù)的解析式;
(2)求的值;
(3)經(jīng)過、兩點(diǎn)的直線的解析式是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com