【題目】某公司經(jīng)過市場調(diào)查發(fā)現(xiàn),該公司生產(chǎn)的某商品在第x天的銷售單價為(x+20)元/件(1≤x≤50),且該商品每天的銷量滿足關(guān)系式y(tǒng)=200﹣4x.已知該商品第10天的售價按8折出售,仍然可以獲得20%的利潤.
(1)求公司生產(chǎn)該商品每件的成本為多少元?
(2)問銷售該商品第幾天時,每天的利潤最大?最大利潤是多少?
(3)該公司每天還需要支付人工、水電和房租等其它費用共計a元,若公司要求每天的最大利潤不低于2200元,且保證至少有46天盈利,則a的取值范圍是(直接寫出結(jié)果).
【答案】
(1)解:設該公司生產(chǎn)每件商品的成本為a元,根據(jù)題意,
得:0.8×(10+20)﹣a=0.2a,
解得:a=20,
故該公司生產(chǎn)每件商品的成本為20元
(2)解:設第x天的銷售利潤為W,
則:W=(x+20﹣20)(﹣4x+200)=﹣4x2+200x=﹣4(x﹣25)2+2500,
∴當x=25時,W取得最大值,最大值為2500元,
故問銷售該商品第25天時,每天的利潤最大,最大利潤是2500元
(3)0<a≤300
【解析】解: (3)記公司每天控制人工、水電和房租支出共計a元后利潤為P, 則P=﹣4(x﹣25)2+2500﹣a,
根據(jù)題意:2500﹣a≥2200,
解得:a≤300,
又∵至少有46天的盈利,
∴﹣4x2+200x﹣a=0的兩根x1、x2間距離x1﹣x2≥46,
∴(x1﹣x2)2≥462 , 即(x1+x2)2﹣4x1x2≥462 ,
∵x1+x2=50,x1x2= ,
∴502﹣4× ≥462 , 解得:a≤384,
綜上,0<a≤300,
所以答案是:0<a≤300.
科目:初中數(shù)學 來源: 題型:
【題目】已知f(x)=x2(1nx﹣a)+a,則下列結(jié)論中錯誤的是( )
A.a>0,x>0,f(x)≥0
B.a>0,x>0,f(x)≤0
C.a>0,x>0,f(x)≥0
D.a>0,x>0,f(x)≤0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知橢圓 的右焦點為F(1,0),且經(jīng)過點
(1)求橢圓P的方程;
(2)已知正方形ABCD的頂點A,C在橢圓P上,頂點B,D在直線7x﹣7y+1=0上,求該正方形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD在坐標系中如圖所示放置.已知點B、C在x軸上,點A在第二象限,D(2,4),BC=6,反比例函數(shù)y= (x<0)的圖象經(jīng)過點A.
(1)求k值;
(2)把矩形ABCD向左平移,使點C剛好與原點重合,此時線段AB與反比例函數(shù)y= 的交點坐標是什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AB=4 ,點C為半圓AB上一動點,以BC為邊向⊙O外作正△BCD(點D在直線AB的上方),連接OD,則線段OD的長( )
A.隨點C的運動而變化,最大值為4
B.隨點C的運動而變化,最大值為4
C.隨點C的運動而變化,最小值為2
D.隨點C的運動而變化,但無最值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB≠BC,連接AC,AE是∠BAD的平分線,交邊DC的延長線于點F.
(1)證明:CE=CF;
(2)若∠B=60°,BC=2AB,試判斷四邊形ABFC的形狀,并說明理由.(如圖2所示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,MN是⊙O的直徑,QN是⊙O的切線,連接MQ交⊙O于點H,E為上一點,連接ME,NE,NE交MQ于點F,且ME2=EFEN.
(1)求證:QN=QF;
(2)若點E到弦MH的距離為1,cos∠Q=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點P的坐標是(a,b),從﹣2,﹣1,0,1,2這五個數(shù)中任取一個數(shù)作為a的值,再從余下的四個數(shù)中任取一個數(shù)作為b的值,則點P(a,b)在平面直角坐標系中第二象限內(nèi)的概率是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com