【題目】為鼓勵學生參加體育鍛煉,學校計劃拿出不超過3200元的資金購買一批籃球和排球,已知籃球和排球的單價比為3:2,單價和為160元.
(1)籃球和排球的單價分別是多少元?
(2)若要求購買的籃球和排球的總數(shù)量是36個,且購買的排球數(shù)少于11個,有哪幾種購買方案?

【答案】
(1)解:設籃球的單價為x元,則排球的單價為 x元,

據(jù)題意得x+ x=160,

解得x=96,

x= ×96=64,

所以籃球和排球的單價分別是96元、64元


(2)解:設購買的籃球數(shù)量為n,則購買的排球數(shù)量為(36﹣n)個.

由題意得:

解得25<n≤28.

而n是整數(shù),所以其取值為26,27,28,對應36﹣n的值為10,9,8,

所以共有三種購買方案:

①購買籃球26個,排球10個;

②購買籃球27個,排球9個;

③購買籃球28個,排球8個


【解析】(1)設籃球的單價為x元,則排球的單價為 x元,再由單價和為160元即可列出關于x的方程,求出x的值,進而可得到籃球和排球的單價;(2)設購買的籃球數(shù)量為n,則購買的排球數(shù)量為(36﹣n)個,再根據(jù)(1)中兩種球的數(shù)量可列出關于n的一元一次不等式組,求出n的取值范圍,根據(jù)n是正整數(shù)可求出n的取值,得到36﹣n的對應值,進而可得到購買方案.
【考點精析】通過靈活運用一元一次不等式組的應用,掌握1、審:分析題意,找出不等關系;2、設:設未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,分別以點A,B為圓心,大于 AB長為半徑作弧,兩弧分別交于M,N兩點,過M,N兩點的直線交AC于點E,若AC=8,BC=6,則AE的長為(
A.2
B.3
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC內接于⊙O,AD為邊上的高,將△ADC沿直線AC翻折得到△AEC,延長EA交⊙O于點P,連接FC,交AB于N.
(1)求證:∠BAC=∠ABC+∠ACF;
(2)求證:EF=DB;
(3)若AD=5,CD=10,CB∥AF,求點F到AB的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果點P(x﹣4,2x+6)在平面直角坐標系的第二象限內,那么x的取值范圍在數(shù)軸上可表示為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,過點A(﹣ ,0)的兩條直線分別交y軸于B、C兩點,∠ABO=30°,OB=3OC.

(1)試說明直線AC與直線AB垂直;
(2)若點D在直線AC上,且DB=DC,求點D的坐標;
(3)在(2)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們把分子為1的分數(shù)叫做理想分數(shù),如 , ,…,任何一個理想分數(shù)都可以寫成兩個不同理想分數(shù)的和,如 = + = + , = + ,…,根據(jù)對上述式子的觀察,請你思考:如果理想分數(shù) = + (n是不小于2的整數(shù),且a<b),那么b﹣a= . (用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,頂點為(1,4)的拋物線y=ax2+bx+c與直線y= x+n交于點A(2,2),直線y= x+n與y軸交于點B與x軸交于點C

(1)求n的值及拋物線的解析式
(2)P為拋物線上的點,點P關于直線AB的對稱軸點在x軸上,求點P的坐標
(3)點D為x軸上方拋物線上的一點,點E為軸上一點,以A、B、E、D為頂點的四邊為平行四邊形時,直接寫出點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一矩形紙片OABC放在平面直角坐標系中,O(0,0),A(6,0),C(0,3).動點Q從點O出發(fā)以每秒1個單位長的速度沿OC向終點C運動,運動 秒時,動點P從點A出發(fā)以相等的速度沿AO向終點O運動.當其中一點到達終點時,另一點也停止運動.設點P的運動時間為t(秒).
(1)用含t的代數(shù)式表示OP,OQ;
(2)當t=1時,如圖1,

將沿△OPQ沿PQ翻折,點O恰好落在CB邊上的點D處,求點D的坐標;
(3)連接AC,將△OPQ沿PQ翻折,得到△EPQ,如圖2.

問:PQ與AC能否平行?PE與AC能否垂直?若能,求出相應的t值;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2014年3月31日是全國中小學生安全教育日,某校全體學生參加了“珍愛生命,預防溺水”專題活動,學習了游泳“五不準”,為了了解學生對“五不準”的知曉情況,隨機抽取了200名學生作調查,請根據(jù)下面兩個不完整的統(tǒng)計圖解答問題:
(1)求在這次調查中,“能答5條”人數(shù)的百分比和“僅能答3條”的人數(shù);
(2)若該校共有2000名學生,估計該校能答3條不準以上(含3條)的人數(shù).

查看答案和解析>>

同步練習冊答案