已知△ABC為等邊三角形,BD為中線,延長BC至E,使CE=CD=1,連接DE,則DE=       .

 

【答案】

【解析】根據等邊三角形每個內角都等于600的性質,得∠CED=120°,

又∵CE=CD,∴∠E=30°。

如圖,過點C作CF⊥DE于點F,則

∵CE=CD=1,

∴在Rt△CEF中,EF=CEcos∠E=cos300。∴DE=2EF=。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網已知△ABC是等邊三角形,⊙O為它的外接圓,點P是
BC
上任一點.
(1)圖中與∠PBC相等的角為
 

(2)試猜想出三條線段PA、PB、PC之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

三角形外心我們可以理解為:到三角形三個頂點距離相等的點稱三角形的外心,由此,我們定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.
舉例:如圖1,若PA=PB,則點P為△ABC的準外心.
(1)應用:如圖2,CD為等邊三角形ABC的高,準外心P在高CD上,且PD=
12
AB,求∠APB的度數(shù).
(2)探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準外心P在AC邊上,試探究PA的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知D是等邊△ABC外一點,∠BDC=120°,則AD、BD、DC三條線段的數(shù)量關系為
AD=BD+DC
AD=BD+DC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知△ABC是等邊三角形,⊙O為它的外接圓,點P是數(shù)學公式上任一點.
(1)圖中與∠PBC相等的角為______;
(2)試猜想出三條線段PA、PB、PC之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省廣州市花都區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•花都區(qū)二模)已知△ABC是等邊三角形,⊙O為它的外接圓,點P是上任一點.
(1)圖中與∠PBC相等的角為______;
(2)試猜想出三條線段PA、PB、PC之間的數(shù)量關系,并證明.

查看答案和解析>>

同步練習冊答案