【題目】如圖,在ABC中,AD是角平分錢,點(diǎn)E在AC上,且EAD=ADE.

1求證:DCE∽△BCA;

2若AB=3,AC=4.求DE的長.

【答案】1、證明過程見解析;2、

【解析】

試題分析:1、利用已知條件易證ABDE,進(jìn)而證明DCE∽△BCA;2、首先證明AE=DE,設(shè)DE=x,所以CE=ACAE=ACDE=4x,利用1中相似三角形的對應(yīng)邊成比例即可求出x的值,即DE的長.

試題解析:1、AD平分BAC, ∴∠BAD=DA, ∵∠EAD=ADE, ∴∠BAD=ADE,

ABDE, ∴△DCE∽△BCA;

2、∵∠EAD=ADE, AE=DE, 設(shè)DE=x, CE=ACAE=ACDE=4x,

∵△DCE∽△BCA, DE:AB=CE:AC, 即x:3=4x:4, 解得:x=,

DE的長是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點(diǎn)AACx軸交拋物線于點(diǎn)C,AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個動點(diǎn),設(shè)其橫坐標(biāo)為m.

(1)求拋物線的解析式;

(2)若動點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;

(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校初中各年級學(xué)生每天的平均睡眠時間(單位:h,精確到1h),抽樣調(diào)查了部分學(xué)生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.

請你根據(jù)圖中提供的信息,回答下列問題:

1)求出扇形統(tǒng)計圖中百分?jǐn)?shù)a的值為   ,所抽查的學(xué)生人數(shù)為   

2)求出平均睡眠時間為8小時的人數(shù),并補(bǔ)全頻數(shù)直方圖.

3)求出這部分學(xué)生的平均睡眠時間的眾數(shù)和平均數(shù).

4)如果該校共有學(xué)生1200名,請你估計睡眠不足(少于8小時)的學(xué)生數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知雙曲線y=x0)和 y=x0),直線OA與雙曲線y=交于點(diǎn)A,將直線OA向下平移與雙曲線y=交于點(diǎn)B,與y軸交于點(diǎn)P,與雙曲線y=交于點(diǎn)C,SABC=6,則k=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+3x+4x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)D在拋物線上且橫坐標(biāo)為3

1)求tan∠DBC的值;

2)點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E在邊CD(不與點(diǎn)CD重合),連接AEBD交于點(diǎn)F.

1)若點(diǎn)ECD中點(diǎn),AB2,求AF的長.

2)若AFB2,求的值.

3)若點(diǎn)G在線段BF上,且GF2BG,連接AG,CG,設(shè)x,四邊形AGCE的面積為,ABG的面積為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象如圖,則下列敘述正確的是( )

A. abc0 B. 3ac0

C. b24ac≥0 D. 將該函數(shù)圖象向左平移2個單位后所得到拋物線的解析式為yax2c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(-4,0),對稱軸為直線x=-1,下列結(jié)論:

①abc>0;

②2a-b=0;

一元二次方程ax2+bx+c=0的解是x1=-4,x2=1;

當(dāng)y>0時,-4<x<2

其中正確的結(jié)論有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長為半徑作,交射線OB于點(diǎn)D,連接CD;

2)分別以點(diǎn)C,D為圓心,CD長為半徑作弧,交于點(diǎn)M,N;

3)連接OM,MN

根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

同步練習(xí)冊答案