【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣6,0),B(﹣1,1),C(﹣3,3),將△ABC繞點B順時針方向旋轉(zhuǎn)90°后得到△A1BC1
(1)畫出△A1BC1 , 寫出點A1、C1的坐標;
(2)計算線段BA掃過的面積.

【答案】
(1)解:如圖,△A1BC1,A1(﹣2,6),C1(1,3);


(2)解:BA= =

所以線段BA掃過的面積= = π


【解析】(1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出點A、C的對應點A1、C1 , 從而得到△A1BC1;(2)先計算出BA的長,然后根據(jù)弧長公式求解.
【考點精析】解答此題的關鍵在于理解扇形面積計算公式的相關知識,掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的南偏東60°方向,距離燈塔40海里的A處,它計劃沿正北方向航行,去往位于燈塔P的北偏東45°方向上的B處.問B處距離燈塔P有多遠?(結(jié)果精確到0.1海里) (參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.449)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論: ①4a+b=0;
②9a+c<3b;
③25a+5b+c=0;
④當x>2時,y隨x的增大而減。
其中正確的結(jié)論有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,反比例函數(shù)y= (x>0)的圖象經(jīng)過點A(2 ,1),射線AB與反比例函數(shù)圖象交于另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.
(1)求k的值;
(2)求tan∠DAC的值及直線AC的解析式;
(3)如圖2,
M是線段AC上方反比例函數(shù)圖象上一動點,過M作直線l⊥x軸,與AC相交于點N,連接CM,求△CMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點坐標為( ,1),下列結(jié)論:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正確結(jié)論的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AD平分∠BAC交⊙O于點D,過點D作DE∥BC交AC的延長線于點E.
(1)試判斷DE與⊙O的位置關系,并證明你的結(jié)論;
(2)若∠E=60°,⊙O的半徑為5,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個相等的實數(shù)根.其中正確的結(jié)論有(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,一枚質(zhì)地均勻的正四面體骰子,它有四個面并分別標有數(shù)字1,2,3,4. 如圖2,正方形ABCD頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長.
如:若從圈A起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落到圈D;若第二次擲得2,就從D開始順時針連續(xù)跳2個邊長,落到圈B;…
設游戲者從圈A起跳.

(1)嘉嘉隨機擲一次骰子,求落回到圈A的概率P1;
(2)淇淇隨機擲兩次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她與嘉嘉落回到圈A的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把邊長相等的正五邊形ABGHI和正六邊形ABCDEF的AB邊重合,按照如圖的方式疊合在一起,連接EB,交HI于點K,則∠BKI的大小為(  )

A.90°
B.84°
C.72°
D.88°

查看答案和解析>>

同步練習冊答案