【題目】如圖,AB、CD分別與半圓OO切于點A,D,BC切⊙O于點E.若AB=4,CD=9,則⊙O的半徑為( )
A. 12 B. C. 6 D. 5
【答案】C
【解析】
過B作CD的垂線,設(shè)垂足為F;由切線長定理知:BA=BE,CE=CD;即BC=AB+CD;在構(gòu)建的Rt△BFC中,BC=AB+CD,CF=CD-AB,根據(jù)勾股定理即可求出BF即圓的直徑,進而可求出⊙O的半徑
過B作BF⊥CD于F,
∵AB、CD與半圓O切于A、D,
∴∠BAD=∠CDA=∠BFD=90°,
∴四邊形ADFB為矩形,
∴AB=DF,BF=AD,
∵AB=BE=4,CD=CE=9;
∴BC=BE+CE=13;
∵AB、CD與半圓O相切,
∴四邊形ADFB為矩形;
∴CF=CD-FD=9-4=5,
在Rt△BFC中,BF===12,
∴AD=BF=12,
∴⊙O的半徑為6.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,.將向上翻折,使點落在上,記為點,折痕為,再將以為對稱軸翻折至,連接.
(1)證明:
(2)猜想四邊形的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算(每小題4分,共16分)
(1)
(2)已知.求代數(shù)式的值.
(3)先化簡,再求值,其中.
(4)解分式方程:+3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤b2>4ac;其中正確的結(jié)論有______.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點A,與y軸交于點C.拋物線經(jīng)過A,C兩點,且與x軸交于另一點B(點B在點A右側(cè)).
(1)求拋物線的解析式及點B坐標(biāo);
(2)若點M是線段BC上的一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;
(3)試探究當(dāng)ME取最大值時,在拋物線上、x軸下方是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是AB延長線上一點,CD與⊙O相切于點E,AD⊥CD于點D.
(1)求證:AE平分∠DAC;
(2)若AB=4,∠ABE=60°.
①求AD的長;
②求出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動,計劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實施后,實際每年綠化面積是原計劃的1.6倍,這樣可提前4年完成任務(wù).
(1)問實際每年綠化面積多少萬平方米?
(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實際平均每年綠化面積至少還要增加多少萬平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校名學(xué)生參加植樹活動,要求每人植棵,活動結(jié)束后隨機抽查了名學(xué)生每人的植樹量,并分為四種類型,:棵;;棵;:棵,:棵。將各類的人繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯誤。
回答下列問題:
(1)寫出條形圖中存在的錯誤,并說明理由.
(2)寫出這名學(xué)生每人植樹量的眾數(shù)、中位數(shù).
(3)在求這名學(xué)生每人植樹量的平均數(shù).
(4)估計這名學(xué)生共植樹多少棵.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com