【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動,計劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實施后,實際每年綠化面積是原計劃的1.6倍,這樣可提前4年完成任務.
(1)問實際每年綠化面積多少萬平方米?
(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實際平均每年綠化面積至少還要增加多少萬平方米?
【答案】(1) 實際每年綠化面積為54萬平方米;(2) 則至少每年平均增加72萬平方米.
【解析】試題分析:(1)設原計劃每年綠化面積為x萬平方米,則實際每年綠化面積為1.6x萬平方米.根據(jù)“實際每年綠化面積是原計劃的1.6倍,這樣可提前4年完成任務”列出方程;(2)設平均每年綠化面積增加a萬平方米.則由“完成新增綠化面積不超過2年”列出不等式.
試題解析:
(1)設原計劃每年綠化面積為x萬平方米,則實際每年綠化面積為1.6x萬平方米,根據(jù)題意,得
解得:x=33.75,
經(jīng)檢驗x=33.75是原分式方程的解,
則1.6x=1.6×33.75=54(萬平方米).
答:實際每年綠化面積為54萬平方米;
(2)設平均每年綠化面積增加a萬平方米,根據(jù)題意得
54×2+2(54+a)≥360
解得:a≥72.
答:則至少每年平均增加72萬平方米.
科目:初中數(shù)學 來源: 題型:
【題目】隨著新農(nóng)村的建設和舊城的改造,我們的家園越來越美麗,小明家附近廣場中央新修了一個圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達到最高,水柱落地處離池中心米.
(1)請你建立適當?shù)闹苯亲鴺讼,并求出水柱拋物線的函數(shù)解析式;
(2)求出水柱的最大高度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關系:y=-x+60(30≤x≤60).
設這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)解析式;
(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,⊙C經(jīng)過坐標原點O,且與x軸,y軸分別相交于M(4,0),N(0,3)兩點.已知拋物線開口向上,與⊙C交于N,H,P三點,P為拋物線的頂點,拋物線的對稱軸經(jīng)過點C且垂直x軸于點D.
(1)求線段CD的長及頂點P的坐標;
(2)求拋物線的函數(shù)表達式;
(3)設拋物線交x軸于A,B兩點,在拋物線上是否存在點Q,使得S四邊形OPMN=8S△QAB,且△QAB∽△OBN成立?若存在,請求出Q點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知x,y為有理數(shù),現(xiàn)規(guī)定一種新運算“〇”滿足x〇y=y2﹣2x
(1)求5〇(﹣3);
(2)求(5〇x)﹣2(y〇x),其中|x﹣1|+(y+2)4=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學興趣小組研究某型號冷柜溫度的變化情況,發(fā)現(xiàn)該冷柜的工作過程是:當溫度達到設定溫度時,制冷停止,此后冷柜中的溫度開始逐漸上升,當上升到時,制冷開始,溫度開始逐漸下降,當冷柜自動制冷至時,制冷再次停止,……,按照以上方式循環(huán)進行.
同學們記錄了44內(nèi)15個時間點冷柜中的溫度隨時間的變化情況,制成下表:
(1)通過分析發(fā)現(xiàn),冷柜中的溫度是時間的函數(shù).
①當時,寫出一個符合表中數(shù)據(jù)的函數(shù)解析式 ;
②當時,寫出一個符合表中數(shù)據(jù)的函數(shù)解析式 ;
(2)的值為 ;
(3)如圖,在直角坐標系中,已描出了上表中部分數(shù)據(jù)對應的點,請描出剩余對應的點,并畫出時溫度隨時間變化的函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,Rt△ABC的直角邊AC在x軸上,∠ACB=90°,AC=1,反比例函數(shù)(k>0)的圖象經(jīng)過BC邊的中點D(3,1).
(1)求這個反比例函數(shù)的表達式;
(2)若△ABC與△EFG成中心對稱,且△EFG的邊FG在y軸的正半軸上,點E在這個函數(shù)的圖象上.
①求OF的長;
②連接AF,BE,證明四邊形ABEF是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com