【題目】一次函數(shù)的圖像與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,-2).
(1)一次函數(shù)的函數(shù)關(guān)系式;
(2)若直線AB上有一點(diǎn)C,且△BOC的面積為2,求點(diǎn)C 的坐標(biāo);
【答案】(1)y=2x-2;(2)C(2,2)或C(-2,-6).
【解析】
(1)設(shè)直線AB的解析式為y=kx+b(k≠0),再把點(diǎn)A(1,0),點(diǎn)B(0,-2)代入得到k、b的方程組,解方程組得到k=2,b=-2,即可得直線AB的解析式為y=2x-2;(2)設(shè)點(diǎn)C的坐標(biāo)為(x,y),由點(diǎn)B的坐標(biāo)為(0 ,﹣2 )可得OB=2;由S△BOC=2,根據(jù)三角形的面積公式可得×2×〡x〡=2,解得x=±2,把x=±2代入直線AB的解析式求得y的值,即可求得點(diǎn)C的坐標(biāo).
(1 )設(shè)直線AB 的解析式為y=kx+b ,
∵直線AB 過點(diǎn)A (1 ,0 )、點(diǎn)B (0 ,﹣2 ),
∴ ,
解得k=2,b=-2,
∴直線AB的解析式為y=2x﹣2.
(2)設(shè)點(diǎn)C的坐標(biāo)為(x,y),
∵點(diǎn)B的坐標(biāo)為(0 ,﹣2 ),
∴OB=2
∵S△BOC=2,
∴×2×〡x〡=2,解得x=±2,
∴y=2×2-2=2或y=2×(-2)-2=-6.
∴點(diǎn)C的坐標(biāo)是(2,2)或(-2,-6).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,三角形ABC的頂點(diǎn)A、B、C的坐標(biāo)分別為(0,3)、(﹣2,1)、(﹣1,1),如果將三角形ABC先向右平移2個(gè)單位長度,再向下平移2個(gè)單位長度,會得到三角形A′B′C′,點(diǎn)A'、B′、C′分別為點(diǎn)A、B、C移動(dòng)后的對應(yīng)點(diǎn).
(1)請直接寫出點(diǎn)A′、B'、C′的坐標(biāo);
(2)請?jiān)趫D中畫出三角形A′B′C′,并直接寫出三角形A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖填空:
(1)∵∠1=∠A(已知),
∴_________(______________________);
(2)∵∠1=∠D(已知),
∴________(________________________);
(3)∵______=∠F(已知),
∴AC∥DF(______________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中.AB=AC.∠BAC=90.E是AC邊上的一點(diǎn),延長BA至D,使AD=AE,連接DE,CD.
(l)圖中是否存在兩個(gè)三角形全等?如果存在請寫出哪兩個(gè)三角形全等,并且證明;如果不存在,請說明理由;
(2)若∠CBE=30,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:
計(jì)算代數(shù)式(其中x≠0)的值后填入下表.并根據(jù)表格所反映出的(其中x≠0)的值與x之間的變化規(guī)律進(jìn)行探究.
x | …… | 0.25 | 0.5 | 1 | 10 | 100 | 1000 | 10000 | …… |
…… | …… |
下面是小東計(jì)算代數(shù)式(其中x≠0)的值后填入表格,并根據(jù)表格進(jìn)行探究的過程,請補(bǔ)充完整:
x | …… | 0.25 | 0.5 | 1 | 10 | 100 | 1000 | 10000 | …… |
…… | 2 | 1 | …… |
(1)上表是(其中x≠0)與x的幾組對應(yīng)值.直接寫出x=10時(shí),求代數(shù)式的值;
(2)隨著x值的增大,代數(shù)式的值有何變化(回答“增大”或“減少”);
(3)當(dāng)x值無限增大時(shí),代數(shù)式的值無限趨近于一個(gè)數(shù),這個(gè)數(shù)是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)橫縱坐標(biāo)分別為整數(shù)的點(diǎn),其順序?yàn)?/span>(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根據(jù)這個(gè)規(guī)律,第2 018個(gè)點(diǎn)的坐標(biāo)為( )
A. (45,9) B. (45,11) C. (45,7) D. (46,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法: ①2a+b=0;
②當(dāng)﹣1≤x≤3時(shí),y<0;
③若(x1 , y1)、(x2 , y2)在函數(shù)圖象上,當(dāng)x1<x2時(shí),y1<y2
④9a+3b+c=0
其中正確的是( )
A.①②④
B.①②③
C.①④
D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P在AC上,點(diǎn)Q在AB上,BE平分∠ABP,交AC于E,CF平分∠ACQ,交AB于F,BE、CF相交于G,CQ、BP相交于D,若∠BDC=140°,∠BGC=110°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC,點(diǎn)D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分線CF于點(diǎn)F.
(1)求證:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com