【題目】如圖,在ABC中.AB=ACBAC=90EAC邊上的一點,延長BAD,使AD=AE,連接DE,CD.

(l)圖中是否存在兩個三角形全等?如果存在請寫出哪兩個三角形全等,并且證明;如果不存在,請說明理由;

(2)若∠CBE=30,求∠ADC的度數(shù).

【答案】(1)存在兩個三角形全等,ABE≌△ACD,理由見解析;(275

【解析】試題分析:(1)根據(jù)AE=AD,AB=AC,∠DAC=∠BAE=90°,根據(jù)SAS即可推出△ABE≌△ACD;

(2)由(1)△ABD≌△ACE,可得∠ABE=∠ACD,由已知可得∠ABE=15°,再根據(jù)三角形的外角即可得∠ADC的度數(shù).

試題解析:(1)存在兩個三角形全等

它們是△ABE≌△ACD;

△ABE△ACD,

∴△ABE≌△ACD;

2AB=AC , BAC=90,

∴∠ABC=45 ,

∵△ABE≌△ACD,

∴∠ABE=∠ACD,

∵∠ABE=ABC-CBE=45-30=15

∵∠BAC=∠ADC+∠ACD,

∴∠ADC=BAC-ACD=90-15=75.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,AB均在邊長為1的正方形網(wǎng)格格點上

1在網(wǎng)格的格點中,AB為邊畫一個ABC,使三角形另外兩邊長為 、;

2若點P在圖中所給網(wǎng)格中的格點上,△APB是等腰三角形,滿足條件的點P共有 ;

3)若將線段AB繞點A順時針旋轉(zhuǎn)90°,寫出旋轉(zhuǎn)后點B的坐標(biāo) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了進(jìn)一步了解義務(wù)教育階段學(xué)生的體質(zhì)健康狀況,某縣從全縣九年級學(xué)生中隨機抽取了部分學(xué)生進(jìn)行了體質(zhì)抽測.體質(zhì)抽測的結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:合格;D級:不合格.并根據(jù)抽測結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽測的學(xué)生人數(shù)是人;
(2)圖(1)中∠α的度數(shù)是 , 并把圖(2)條形統(tǒng)計圖補充完整
(3)該縣九年級有學(xué)生4800名,如果全部參加這次體質(zhì)測試,請估計不合格的人數(shù)為
(4)測試?yán)蠋熛霃?位同學(xué)(分別記為E、F、G、H,其中H為小明)中隨機選擇兩位同學(xué)了解平時訓(xùn)練情況,請用列表或畫樹形圖的方法求出選中小明的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強學(xué)生體質(zhì),決定開放以下體育課外活動項目:A.籃球、B.乒乓球、C.跳繩、D.踢毽子.為了解學(xué)生最喜歡哪一種活動項目,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,其中A所在扇形的圓心角為30°,則在被調(diào)查的學(xué)生中選擇跳繩的人數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Rt△ABD中,∠A=90°,將斜邊BD繞點B順時針方向旋轉(zhuǎn)至BC,使BC∥AD,過點C作CE⊥BD于點E.
(1)求證:△ABD≌△ECB;
(2)若∠ABD=30°,BE=3,求弧CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+8x軸,y軸分別交于點ABMOB上的一點,若將△ABM沿AM折疊,點B恰好落在x軸上的點B′處,則直線AM的解析式為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖像與x軸交于點A(1,0),與y軸交于點B(0,-2).

(1)一次函數(shù)的函數(shù)關(guān)系式;

(2)若直線AB上有一點C,且△BOC的面積為2,求點C 的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組條件中,不能判斷△ABC≌△DEF的是(

A. ∠A=∠D,AB=DE,∠B=∠E B. AB=DE,∠A=∠D,BC=EF

C. AB=DE,BC=EF,AC=DF D. ∠B=∠E=90°,AB=DE,AC=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是正方形ABCD的對角線BD上的一個動點(不與B、D重合),連結(jié)AP,過點B作直線AP的垂線,垂足為H,連結(jié)DH.若正方形的邊長為4,則線段DH長度的最小值是

查看答案和解析>>

同步練習(xí)冊答案