【題目】1)如圖①,在RtABC中,ABAC,DBC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,試探索線段BC,DC,EC之間滿足的等量關(guān)系,并證明你的結(jié)論.

2)如圖②,在RtABCRtADE中,ABAC,ADAE,將ADE繞點A旋轉(zhuǎn),使點D落在BC邊上,試探索線段ADBD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論.

【答案】1BCDC+EC,理由見解析;(2BD2+CD22AD2,理由見解析.

【解析】

1)由題意可知:CDCE,∠DCE90°,由于∠ACB90°,所以∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,所以∠ACD=∠BCE,從而可證明△ACD≌△BCESAS

2)由△ACD≌△BCESAS)可知:∠A=∠CBE45°,BEBF,從而可求出∠BEF的度數(shù).

解:(1BDDC+EC,

理由如下:將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,

ADAE,DAE90°BAC

∴∠BADCAE,且ABACADAE,

∴△BAD≌△CAESAS

ECBD,

BCBD+CDCE+CD;

2BD2+CD22AD2

理由如下:連接CE,

由(1)得,BAD≌△CAE,

BDCE,ACEB

∴∠DCE90°,

CE2+CD2ED2,

Rt△ADE中,AD2+AE2ED2,

ADAE,

BD2+CD22AD2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,存在拋物線以及兩點.

(1)求該拋物線的頂點坐標;

(2)若該拋物線經(jīng)過點,求此拋物線的表達式;

(3)若該拋物線與線段只有一個公共點,結(jié)合圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,都是等腰直角三角形,,的頂點的斜邊的中點重合,將繞點旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段與線段相交于點,射線與線段相交于點,與射線相交于點.

1)求證:

2)求證:平分;

3)當,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用配方法解下列方程,其中應在方程左右兩邊同時加上4的是(  )

A. x22x5 B. x2+4x5 C. 2x24x5 D. 4x2+4x5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣30)和B1,0)兩點,交y軸于點C03),點CD是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B,D,交y軸為E

1)求二次函數(shù)的解析式;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖中的小方格都是邊長為1的正方形,ABC的頂點和O點都在正方形的頂點上.

1)以點O為位似中心,在方格圖中將ABC放大為原來的2倍,得到A1B1C1

2)將A1B1C1繞點B1順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的A2B1C2;

3)在(2)的旋轉(zhuǎn)過程中,點A1的運動路徑長為  ,邊A1C1掃過的區(qū)域面積為  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.

1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結(jié)果;

2)求一次打開鎖的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<AD,D=30°,CD=4,以AB為直徑的⊙OBC于點E,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):

溫度/℃

……

4

2

0

2

4

4.5

……

植物每天高度增長量/mm

……

41

49

49

41

25

19.75

……

由這些數(shù)據(jù),科學家推測出植物每天高度增長量是溫度的函數(shù),且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.

1)請你選擇一種適當?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡要說明不選擇另外兩種函數(shù)的理由;

2)溫度為多少時,這種植物每天高度的增長量最大?

3)如果實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實驗室的溫度應該在哪個范圍內(nèi)選擇?請直接寫出結(jié)果.

查看答案和解析>>

同步練習冊答案