【題目】圖中的小方格都是邊長為1的正方形,△ABC的頂點和O點都在正方形的頂點上.
(1)以點O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A1B1C1;
(2)將△A1B1C1繞點B1順時針旋轉90°,畫出旋轉后得到的△A2B1C2;
(3)在(2)的旋轉過程中,點A1的運動路徑長為 ,邊A1C1掃過的區(qū)域面積為 .
科目:初中數(shù)學 來源: 題型:
【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成兩個三角形,如果這兩個三角形相似但不全等,我們就把這條對角線叫做這個四邊形的相似對角線,在四邊形ABCD中,對角線BD是它的相似對角線,∠ABC=70°,BD平分∠ABC,那么∠ADC=____________度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量山腳到塔頂?shù)母叨龋?/span>的長),某同學在山腳處用測角儀測得塔頂的仰角為,再沿坡度為的小山坡前進400米到達點,在處測得塔頂的仰角為.
(1)求坡面的鉛垂高度(即的長);
(2)求的長.(結果保留根號,測角儀的高度忽略不計).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為坐標原點,點B在x軸的正半軸上,四邊形OACB是平行四邊形,點A的橫縱坐標之比為3:4,反比例函數(shù)y=(k>0)在第一象限內的圖象經過點A,且與BC交于點F.
(1)若OA=10,求反比例函數(shù)解析式;
(2)若點F為BC的中點,且△AOF的面積S=12,求OA的長和點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉90°得到AE,連接EC,試探索線段BC,DC,EC之間滿足的等量關系,并證明你的結論.
(2)如圖②,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點A旋轉,使點D落在BC邊上,試探索線段AD,BD,CD之間滿足的等量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為圓O上一動點(不與點B重合),點T為圓O上一動點,且∠BOT=60°,將BC繞點B順時針旋轉90°得到BD,連接TD,當TD最大時,∠BDT的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2.
(1)在拋物線上有一點A(1,1),過點A的直線l與拋物線只有一個公共點,直接寫出直線l的解析式;
(2)如圖1,拋物線有兩點F、G,連接FG交y軸于M,過G作x軸的垂線,垂足為H,連接HM、OF,求證:OF∥MH;
(3)將拋物線y=x2沿直線y=x移動,新拋物線的頂點C,與直線的另一個交點為B,與y軸的交點為D,作直線x=4與直線CD、BD交于點N、E,如圖2,求EN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,在△ABC中,∠ACB=90°,D是AB的中點,以DC為直徑的⊙O交△ABC的邊于G,F,E點.求證:(1)∠A=∠GEF;(2)△BDF≌FEC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某化工材料經銷商購進一種化工材料若干千克,成本為每千克30元,物價部門規(guī)定其銷售單價不低于成本價且不高于成本價的2倍,經試銷發(fā)現(xiàn),日銷售量(千克)與銷售單價(元)符合一次函數(shù)關系,如圖所示.
(1)求與之間的函數(shù)關系式,并寫出自變量的取值范圍;
(2)若在銷售過程中每天還要支付其他費用500元,當銷售單價為多少時,該公司日獲利最大?最大獲利是多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com