【題目】如圖,C為圓O上一動(dòng)點(diǎn)(不與點(diǎn)B重合),點(diǎn)T為圓O上一動(dòng)點(diǎn),且∠BOT60°,將BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到BD,連接TD,當(dāng)TD最大時(shí),∠BDT的度數(shù)為_____

【答案】7.5°

【解析】

作與圓O半徑相等的圓E,圓E與圓O的直徑AB相切與點(diǎn)B,連接TE并延長(zhǎng)交圓E于點(diǎn)D,連接BD,作BCBD,交圓O于點(diǎn)C,則BEAB,在圓E上取一點(diǎn)F,連接TF、EF,則TE+EFTF,由DEEF,得出TDTF,此時(shí)TD最大,易證△OBT是等邊三角形,得出∠OBT60°,BTOBBE,求出∠EBT90°+60°150°,∠BET180°150°)=15°,∠EDBBET7.5°,即可得出結(jié)果.

解:作與圓O半徑相等的圓E,圓E與圓O的直徑AB相切與點(diǎn)B,連接TE并延長(zhǎng)交圓E于點(diǎn)D,連接BD,作BCBD,交圓O于點(diǎn)C,如圖所示:

BEAB

在圓E上取一點(diǎn)F,連接TF、EF,則TE+EFTF

DEEF,

TDTF

∴此時(shí)TD最大,

OBOT,∠BOT60°,

∴△OBT是等邊三角形,

∴∠OBT60°BTOBBE,

∴∠BET=∠BTE,

BEAB,

∴∠EBT90°+60°150°

∴∠BET180°150°)=15°,

EDEB

∴∠EDB=∠EBD,

∴∠EDBBET×15°7.5°

即∠BDT的度數(shù)為7.5°,

故答案為:7.5°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)數(shù)學(xué)興趣小組的學(xué)生進(jìn)行社會(huì)實(shí)踐活動(dòng)時(shí),想利用所學(xué)的解直角三角形的知識(shí)測(cè)量教學(xué)樓的高度,他們先在點(diǎn)D處用測(cè)角儀測(cè)得樓頂M的仰角為30°,再沿DF方向前行40米到達(dá)點(diǎn)E處,在點(diǎn)E處測(cè)得樓頂M的仰角為45°,已知測(cè)角儀的高AD1.5米,請(qǐng)根據(jù)他們的測(cè)量數(shù)據(jù)求此樓MF的高(結(jié)果精確到0.1m,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O的直徑AB長(zhǎng)為12,點(diǎn)E是半徑OA的中點(diǎn),過(guò)點(diǎn)ECDABO于點(diǎn)C、D,點(diǎn)P上運(yùn)動(dòng),點(diǎn)Q在線段CP上,且PQ=2CQ,則EQ的最大值是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12m,寬是4m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y表示,且拋物線上的點(diǎn)COB的水平距離為3m,到地面OA的距離為m

1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;

2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過(guò)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中的小方格都是邊長(zhǎng)為1的正方形,ABC的頂點(diǎn)和O點(diǎn)都在正方形的頂點(diǎn)上.

1)以點(diǎn)O為位似中心,在方格圖中將ABC放大為原來(lái)的2倍,得到A1B1C1;

2)將A1B1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的A2B1C2;

3)在(2)的旋轉(zhuǎn)過(guò)程中,點(diǎn)A1的運(yùn)動(dòng)路徑長(zhǎng)為  ,邊A1C1掃過(guò)的區(qū)域面積為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,張大爺用32米長(zhǎng)的籬笆圍成一個(gè)矩形菜園,菜園一邊靠墻(墻長(zhǎng)為15米),平行于墻的一面開(kāi)一扇寬度為2米的門,張大爺還在菜園內(nèi)開(kāi)辟出一個(gè)小區(qū)域存放化肥,兩個(gè)區(qū)域用籬笆隔開(kāi),并有一扇2米的門相連(注:所有門都用其它材料).

1)設(shè)平行于墻的一邊長(zhǎng)度為y米,垂直于墻的一邊長(zhǎng)度為x米,直接寫出yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

2)設(shè)此時(shí)整個(gè)菜園的面積為Sm2(包括化肥存放處),則S的最大值為多少?

3)若此時(shí)整個(gè)菜園的面積不小于81m2(包括化肥存放處),結(jié)合圖象,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點(diǎn)P,連結(jié)EF、EO,若DE=,DPA=45°.

(1)求⊙O的半徑;

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y有最大值4,且圖象與x軸兩交點(diǎn)間的距離是8,對(duì)稱軸為x=﹣3,此二次函數(shù)的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點(diǎn),AE=ED,DF=DC,連結(jié)EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G,連結(jié)BE.

(1)求證:△ABE∽△DEF.

(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案