【題目】為了解某校初二學(xué)生每周上網(wǎng)的時間,兩位學(xué)生進(jìn)行了抽樣調(diào)查.小麗調(diào)查了初二電腦愛好者中40名學(xué)生每周上網(wǎng)的時間;小杰從全校400名初二學(xué)生中隨機(jī)抽取了40名學(xué)生,調(diào)查了每周上網(wǎng)的時間.小麗與小杰整理各自樣本數(shù)據(jù),如下表所示:
時間段 (小時/周) | 小麗抽樣 人數(shù) | 小杰抽樣 人數(shù) |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每組可含最低值,不含最高值)
(1)你認(rèn)為哪位同學(xué)抽取的樣本不合理?請說明理由;
(2)根據(jù)合理抽取的樣本,把上圖中的頻數(shù)分布直方圖補(bǔ)畫完整;
(3)專家建議每周上網(wǎng)2小時以上(含2小時)的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時間,估計該校全體初二學(xué)生中有多少名同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時間?
【答案】(1)小麗,見解析;(2)見解析;(3)80名
【解析】
(1)小麗抽取的樣本太片面,電腦愛好者上網(wǎng)時間一定多,所以不具代表性,而小杰抽取的樣本是隨機(jī)抽取具有代表性,據(jù)此可作出判斷;
(2)根據(jù)統(tǒng)計表即可直接補(bǔ)全直方圖;
(3)利用總?cè)藬?shù)400乘以每周上網(wǎng)2小時以上(含2小時)的學(xué)生人數(shù)對應(yīng)的比例即可.
解:(1)小麗同學(xué)抽取的樣本不合理,因?yàn)樗槿〉臉颖咎,電腦愛好者上網(wǎng)時間一定多,所以樣本不具有代表性;
(2)如圖所示:
(3)該校全體初二學(xué)生中應(yīng)適當(dāng)減少上網(wǎng)的時間的人數(shù)是:400×=80(名).
答:該校全體初二學(xué)生中有80名同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時間.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會活動,活動后,就活動的
5個主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選取最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完
整的統(tǒng)計圖,根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)在扇形統(tǒng)計圖中“進(jìn)取”部分扇形的圓心角是 度;
(4)若該校學(xué)生人數(shù)為800人,請根據(jù)上述調(diào)查結(jié)果,估計該校學(xué)生中“感恩”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l:與直線,直線分別交于點(diǎn)A,B,直線與直線交于點(diǎn).
(1)求直線與軸的交點(diǎn)坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記線段圍成的區(qū)域(不含邊界)為.
①當(dāng)時,結(jié)合函數(shù)圖象,求區(qū)域內(nèi)的整點(diǎn)個數(shù);
②若區(qū)域內(nèi)沒有整點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸相交于點(diǎn),,與軸相交于點(diǎn),點(diǎn)為拋物線的頂點(diǎn),軸于點(diǎn),且.
(1)求拋物線的解析式;
(2)做點(diǎn)與點(diǎn)關(guān)于對稱軸對稱,連接,過點(diǎn)作,過點(diǎn)作,與相交于點(diǎn),若,求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,點(diǎn)是第一象限內(nèi)拋物線上一點(diǎn),連接與相交于點(diǎn),過點(diǎn)做軸于點(diǎn),與相交于,連接,若,求點(diǎn)的坐標(biāo)和的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,10×10的網(wǎng)格中,A,B,C均在格點(diǎn)上,誚用無刻度的直尺作直線MN,使得直線MN平分△ABC的周長(留作圖痕跡,不寫作法)
(1)請?jiān)趫D1中作出符合要求的一條直線MN;
(2)如圖2,點(diǎn)M為BC上一點(diǎn),BM=5.請?jiān)?/span>AB上作出點(diǎn)N的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,老舊電視機(jī)屏幕的長寬比為4︰3,但是多數(shù)電影圖像的長寬比為2.4︰1,故在播放電影時電視機(jī)屏幕的上方和下方會有兩條等寬的黑色帶子.
(1)若圖①中電視機(jī)屏幕為20寸(即屏幕對角線長度):
①該屏幕的長= 寸,寬= 寸;
②已知“屏幕浪費(fèi)比=黑色帶子的總面積:電視機(jī)屏幕的總面積”,求該電視機(jī)屏幕的浪費(fèi)比.
(2) 為了兼顧電影的收視需求,一種新的屏幕的長寬比誕生了.如圖②,這種屏幕(矩形ABCD)恰好包含面積相等且長寬比分別為4︰3的屏幕(矩形EFGH)與2.4︰1的屏幕(矩形MNPQ).求這種屏幕的長寬比.(參考數(shù)據(jù):≈2.2,結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形OABC的直角頂點(diǎn)是坐標(biāo)原點(diǎn),邊OA,OC分別在x軸,y軸的正半軸上.OA∥BC,D是BC上一點(diǎn),BD=OA=,AB=3,∠OAB=45°,E,F分別是線段OA,AB上的兩個動點(diǎn),且始終保持∠DEF=45°.設(shè)OE=x,AF=y,則y與x的函數(shù)關(guān)系式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為平行四邊形,為的中點(diǎn),連接并延長交 的延長線于點(diǎn).
(1)求證:△≌△;
(2)過點(diǎn)作于點(diǎn),為的中點(diǎn).判斷與的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線y=與直線y=x交于A、B兩點(diǎn),點(diǎn)P(a,b)在雙曲線y=上,且0<a<4.
(1)設(shè)PB交x軸于點(diǎn)E,若a=1,求點(diǎn)E的坐標(biāo);
(2)連接PA、PB,得到△ABP,若4a=b,求△ABP的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com