【題目】已知:正方形ABCD,E是BC的中點,連接AE,過點B作射線BM交正方形的一邊于點F,交AE于點O.
(1)若BF⊥AE,
①求證:BF=AE;
②連接OD,確定OD與AB的數(shù)量關(guān)系,并證明;
(2)若正方形的邊長為4,且BF=AE,求BO的長.
【答案】(1)①見解析;②OD=AB.證明見解析;(2)①BO=或BO=.
【解析】
(1)①如圖1①,要證BF=AE,只需證△ABE≌△BCF,只需證到∠BAE=∠CBF即可;
②延長AD,交射線BM于點G,如圖1②,由△ABE≌△BCF可得BE=CF,由此可得CF=DF,從而可證到△DGF≌△CBF,則有DG=BC,從而可得DG=AD,然后運用直角三角形斜邊上的中線等于斜邊的一半即可解決問題;
(2)可分點F在CD上和點F在AD上兩種情況進行討論.當點F在CD上時,如圖2①,易證Rt△ABE≌Rt△BCF(HL),則有∠BAE=∠CBF,由此可證到∠AOB=90°,然后在Rt△ABE中,運用面積法就可求出BO的長;當點F在AD上時,如圖2②,易證Rt△ABE≌Rt△BAF(HL),則有∠BAE=∠ABF,根據(jù)等角對等邊可得OB=OA,根據(jù)等角的余角相等可得∠AEB=∠EBF,根據(jù)等角對等邊可得OB=OE,即可得到OA=OB=OE,只需求出AE的長就可解決問題.
(1)①如圖1①,
∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠ABE=∠C=90°,
∴∠BAE+∠AEB=90°,
∵BF⊥AE,
∴∠CBF+∠AEB=90°,
∴∠BAE=∠CBF,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(ASA),
∴BF=AE;
②OD=AB.
證明:延長AD,交射線BM于點G,如圖1②,
∵△ABE≌△BCF,
∴BE=CF.
∵E為BC的中點,
∴CF=BE=BC=DC,
∴CF=DF.
∵DG∥BC,
∴∠DGF=∠CBF.
在△DGF和△CBF中,
,
∴△DGF≌△CBF,
∴DG=BC,
∴DG=AD.
∵BF⊥AE,
∴OD=AG=AD=AB;
(2)①若點F在CD上,如圖2①,
在Rt△ABE和Rt△BCF中,
,
∴Rt△ABE≌Rt△BCF(HL),
∴∠BAE=∠CBF,
∵∠BAE+∠AEB=90°,
∴∠CBF+∠AEB=90°,
∴∠AOB=90°.
∵∠ABE=90°,AB=4,BE=2,
∴AE==2 .
∵S△ABE=ABBE=AEBO,
∴BO=.
②若點F在AD上,如圖2②,
在Rt△ABE和Rt△BAF中,
,
∴Rt△ABE≌Rt△BAF(HL),
∴∠BAE=∠ABF,
∴OB=OA.
∵∠BAE+∠AEB=90°,∠ABF+∠EBF=90°,
∴∠AEB=∠EBF,
∴OB=OE,
∴OA=OB=OE.
∵∠ABE=90°,AB=4,BE=2,
∴AE==2,
∴OB=AE=.
綜上所述:BO的長為或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,△ABC的三個頂點坐標分別為A(-4,1)、B(-1,1)、C(-4,3).
(1)畫出Rt△ABC關(guān)于原點O成中心對稱的圖形Rt△A1B1C1;
(2)若Rt△ABC與Rt△A2BC2關(guān)于點B中心對稱,則點A2的坐標為 、C2的坐標為 .
(3)求點A繞點B旋轉(zhuǎn)180°到點A2時,點A在運動過程中經(jīng)過的路程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上,已知點,分別表示數(shù)1,,那么數(shù)軸上表示數(shù)的點應落在( )
A.點的左邊B.線段上C.點的右邊D.數(shù)軸的任意位置
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不能得出BE∥DF的是( 。
A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務員能否完成2017年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=10,BC=4,Q為AB邊的中點,P為CD邊上的動點,且△AQP是腰長為5的等腰三角形,則CP的長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行“漢字聽寫”比賽,每位學生聽寫漢字39個比賽結(jié)束后,隨機抽查部分學生的聽寫結(jié)果,以下是根據(jù)抽査結(jié)果繪制的統(tǒng)計圖的一部分根據(jù)信息解決下列問題:
(1)樣本容量是 ,a= ,b= ;
(2)在扇形統(tǒng)計圖中,“D組”所對應的圓心角的度數(shù)為 ;
(3)補全條形統(tǒng)計圖;
(4)該校共有1200名學生,如果聽寫正確的個數(shù)少于16個定為不合格,請你估計這所學校本次比賽聽寫不合格的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市公交公司為應對春運期間的人流高峰,計劃購買A、B兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,
(1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?
(2)若該公司預計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費用W最少?最少總費用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com