【題目】如圖,在⊙O中,AB為直徑,D、E為圓上兩點(diǎn),C為圓外一點(diǎn),且∠E+∠C=90°.
(1)求證:BC為⊙O的切線.
(2)若sinA= ,BC=6,求⊙O的半徑.
【答案】
(1)證明:∵∠A與∠E所對(duì)的弧是 弧BD ,
∴∠A=∠E,
又∵∠E+∠C=90°,
∴∠A+∠C=90°,
∴∠ABC=180°﹣90°=90°,
∵AB為直徑,
∴BC為⊙O的切線.
(2)解:∵sinA= ,BC=6,
∴ = ,
即 = ,
∴AC=10,
在Rt△ABC中,
∴AB= = =8,
又∵AB為直徑,
∴⊙O的半徑是 ×8=4.
【解析】(1)根據(jù)同弧所對(duì)的圓周角相等得∠A=∠E,同等量代換得∠A+∠C=90°,再由三角形內(nèi)角和得∠ABC=90°,根據(jù)切線的判定即可得BC為⊙O的切線.
(2)由三角函數(shù)正弦定義得:sinA== ,從而得AC=10,在Rt△ABC中,根據(jù)勾股定理得AB=8,從而得⊙O的半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線,把的直角三角板的直角頂點(diǎn)放在直線上.將直角三角板在平面內(nèi)繞點(diǎn)任意轉(zhuǎn)動(dòng),若轉(zhuǎn)動(dòng)的過(guò)程中,直線與直線的夾角為60°,則的度數(shù)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】提出問(wèn)題:
(1)如圖,我們將圖(1)所示的凹四邊形稱為“鏢形”.在“鏢形”圖中,與、、的數(shù)量關(guān)系為____.
(2)如圖(2),已知平分,,,求的度數(shù).
由(1)結(jié)論得:
所以 即
因?yàn)?/span>
所以
所以.
解決問(wèn)題:
(1)如圖(3),直線平分, 平分的外角,猜想與、的數(shù)量關(guān)系是______;
(2)如圖(4),直線平分的外角, 平分的外角,猜想與、的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:A(0,3),B(3,0),C(3,4)三點(diǎn),點(diǎn)P(x,﹣0.5x),當(dāng)△ABP的面積等于△ABC的面積時(shí),則P點(diǎn)的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)家華羅庚在一次出國(guó)訪問(wèn)途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺(jué)十分驚奇,請(qǐng)華羅庚給大家解讀了其中的奧秘.
你知道怎樣迅速準(zhǔn)確的計(jì)算出結(jié)果嗎?請(qǐng)你按下面的問(wèn)題試一試:
①,,又,
,
能確定59319的立方根是個(gè)兩位數(shù).
②59319的個(gè)位數(shù)是9,又,
能確定59319的立方根的個(gè)位數(shù)是9.
③如果劃去59319后面的三位319得到數(shù)59,
而,則,可得,
由此能確定59319的立方根的十位數(shù)是3
因此59319的立方根是39.
(1)現(xiàn)在換一個(gè)數(shù)110592,按這種方法求立方根,請(qǐng)完成下列填空.
①它的立方根是 位數(shù).
②它的立方根的個(gè)位數(shù)是 .
③它的立方根的十位數(shù)是 .
④110592的立方根是 .
(2)請(qǐng)直接填寫(xiě)結(jié)果:
① ;
② ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AE⊥BC于點(diǎn)E,延長(zhǎng)BC至點(diǎn)F使CF=BE,連結(jié)AF,DE,DF.
(1)求證:四邊形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程變形正確的是( )
A.方程3x﹣2=2x﹣1移項(xiàng),得3x﹣2x=﹣1﹣2
B.方程3﹣x=2﹣5(x﹣1)去括號(hào),得3﹣x=2﹣5x﹣1
C.方程 可化為3x=6.
D.方程 系數(shù)化為1,得x=﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB經(jīng)過(guò)點(diǎn)A(6,0)、B(0,6),⊙O的半徑為2(O為坐標(biāo)原點(diǎn)),點(diǎn)P是直線AB上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙O的一條切線PQ,Q為切點(diǎn),則切線長(zhǎng)PQ的最小值為( )
A.
B.3
C.3
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國(guó)古算書(shū)《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出( )
A.直角三角形的面積
B.最大正方形的面積
C.較小兩個(gè)正方形重疊部分的面積
D.最大正方形與直角三角形的面積和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com