【題目】(1)(發(fā)現(xiàn)證明)
如圖1,在正方形ABCD中,點(diǎn)E,F分別是BC,CD邊上的動(dòng)點(diǎn),且∠EAF=45°,求證:EF=DF+BE.
小明發(fā)現(xiàn),當(dāng)把△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至△ADG,使AB與AD重合時(shí)能夠證明,請(qǐng)你給出證明過(guò)程.
(2)(類(lèi)比引申)①如圖2,在正方形ABCD中,如果點(diǎn)E,F分別是CB,DC延長(zhǎng)線(xiàn)上的動(dòng)點(diǎn),且∠EAF=45°,則(1)中的結(jié)論還成立嗎?請(qǐng)寫(xiě)出證明過(guò)程.
②如圖3,如果點(diǎn)E,F分別是BC,CD延長(zhǎng)線(xiàn)上的動(dòng)點(diǎn),且∠EAF=45°,則EF,BE,DF之間的數(shù)量關(guān)系是 (不要求證明)
(3)(聯(lián)想拓展)如圖1,若正方形ABCD的邊長(zhǎng)為6,AE=3,求AF的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)①不成立,結(jié)論:EF=DF﹣BE;證明見(jiàn)解析;②BE=EF+DF;(3)AF=.
【解析】
(1)【發(fā)現(xiàn)證明】
證明△EAF≌△GAF,可得出EF=FG,則結(jié)論得證;
(2)【類(lèi)比引申】
①將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至△ADM根據(jù)SAS可證明△EAF≌△MAF,可得EF=FM,則結(jié)論得證;
②將△ADF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ABN,證明△AFE≌△ANE,可得出EF=EN,則結(jié)論得證;
(3)【聯(lián)想拓展】
求出DG=2,設(shè)DF=x,則EF=DG=x+3,CF=6﹣x,在Rt△EFC中,得出關(guān)于x的方程,解出x則可得解.
(1)【發(fā)現(xiàn)證明】
證明:把△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至△ADG,如圖1,
∴∠BAE=∠DAG,AE=AG,
∵∠EAF=45°,
∴∠BAE+∠FAD=45°,
∴∠DAG+∠FAD=45°,
∴∠EAF=∠FAG,
∵AF=AF,
∴△EAF≌△GAF(SAS),
∴EF=FG=DF+DG,
∴EF=DF+BE;
(2)【類(lèi)比引申】
①不成立,結(jié)論:EF=DF﹣BE;
證明:如圖2,將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至△ADM,
∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,
∴∠FAM=45°=∠EAF,
∵AF=AF,
∴△EAF≌△MAF(SAS),
∴EF=FM=DF﹣DM=DF﹣BE;
②如圖3,將△ADF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ABN,
∴AN=AF,∠NAF=90°,
∵∠EAF=45°,
∴∠NAE=45°,
∴∠NAE=∠FAE,
∵AE=AE,
∴△AFE≌△ANE(SAS),
∴EF=EN,
∴BE=BN+NE=DF+EF.
即BE=EF+DF.
故答案為:BE=EF+DF.
(3)【聯(lián)想拓展】
解:由(1)可知AE=AG=3,
∵正方形ABCD的邊長(zhǎng)為6,
∴DC=BC=AD=6,
∴==3.
∴BE=DG=3,
∴CE=BC﹣BE=6﹣3=3,
設(shè)DF=x,則EF=DG=x+3,CF=6﹣x,
在Rt△EFC中,∵CF2+CE2=EF2,
∴(6﹣x)2+32=(x+3)2,
解得:x=2.
∴DF=2,
∴AF===2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點(diǎn)E、F,若CE=2,連接CF.以下結(jié)論:①∠BAF=∠BCF; ②點(diǎn)E到AB的距離是2; ③S△CDF:S△BEF=9:4; ④tan∠DCF=3/7. 其中正確的有()
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為滿(mǎn)足市場(chǎng)需求,某超市在五月初五“端午節(jié)”來(lái)臨前夕,購(gòu)進(jìn)一種品牌粽子,每盒進(jìn)價(jià)是40元.超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷(xiāo)售經(jīng)驗(yàn)發(fā)現(xiàn);當(dāng)售價(jià)定為每盒45元時(shí),每天可以賣(mài)出700盒,每盒售價(jià)每提高1元,每天要少賣(mài)出20盒.
(1)試求出每天的銷(xiāo)售量y(盒)與每盒售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷(xiāo)售的利潤(rùn)P(元)最大?最大利潤(rùn)是多少?
(3)為穩(wěn)定物價(jià),有關(guān)管理部門(mén)限定:這種粽子的每盒售價(jià)不得高于58元.如果超市想要每天獲得不低于6000元的利潤(rùn),那么超市每天至少銷(xiāo)售粽子多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月24日《復(fù)仇者聯(lián)盟4》在中國(guó)大陸上映.我市江北UME影城為加大宣傳,決定在4月23日預(yù)售普通3D票400張和IMAX票100張,且預(yù)售中的IMAX的票價(jià)是普通3D票價(jià)的2倍.
(1)若影城的預(yù)售總額不低于21000元,則普通3D票的預(yù)售價(jià)格最少為多少元?
(2)影城計(jì)劃在上映當(dāng)天推出普通3D票3200張,IMAX票800張.由于預(yù)售的火爆,影城決定將普通3D票的價(jià)格在(1)中最低價(jià)格的基礎(chǔ)上增加%,而IMAX票價(jià)在(1)中IMAX票價(jià)上增加了a元,結(jié)果普通3D票的銷(xiāo)售量比計(jì)劃少2a%.IMAX票的銷(xiāo)售量與計(jì)劃保持一致,最終實(shí)際銷(xiāo)售額與計(jì)劃銷(xiāo)售額相等,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1的坐標(biāo)為(2,4),以點(diǎn)O為圓心,以OA1長(zhǎng)為半徑畫(huà)弧,交直線(xiàn)y=x于點(diǎn)B1.過(guò)B1點(diǎn)作B1A2∥y軸,交直線(xiàn)y=2x于點(diǎn)A2,以O為圓心,以OA2長(zhǎng)為半徑畫(huà)弧,交直線(xiàn)y=x于點(diǎn)B2;過(guò)點(diǎn)B2作B2A3∥y軸,交直線(xiàn)y=2x于點(diǎn)A3,以點(diǎn)O為圓心,以OA3長(zhǎng)為半徑畫(huà)弧,交直線(xiàn)y=x于點(diǎn)B3;過(guò)B3點(diǎn)作B3A4∥y軸,交直線(xiàn)y=2x于點(diǎn)A4,以點(diǎn)O為圓心,以OA4長(zhǎng)為半徑畫(huà)弧,交直線(xiàn)y=x于點(diǎn)B4,…按照如此規(guī)律進(jìn)行下去,點(diǎn)B2020的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了運(yùn)送防疫物資,甲、乙兩貨運(yùn)公司各派出一輛卡車(chē),分別從距目的地240千米和270千米的兩地同時(shí)出發(fā),馳援疫區(qū).已知乙公司卡車(chē)的平均速度是甲公司卡車(chē)的平均速度的1.5倍,甲公司的卡車(chē)比乙公司的卡車(chē)晚1小時(shí)到達(dá)目的地,分別求甲、乙兩貨運(yùn)公司卡車(chē)的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】校車(chē)安全是近幾年社會(huì)關(guān)注的重大問(wèn)題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車(chē)速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車(chē)道上確定點(diǎn)D,使CD與垂直,測(cè)得CD的長(zhǎng)等于21米,在上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=300,∠CBD=600.
(1)求AB的長(zhǎng)(精確到0.1米,參考數(shù)據(jù):);
(2)已知本路段對(duì)校車(chē)限速為40千米/小時(shí),若測(cè)得某輛校車(chē)從A到B用時(shí)2秒,這輛校車(chē)是否超速?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形ABCO的兩邊OA,OC在坐標(biāo)軸的正半軸上,BC∥x軸,OA=OC=4,以直線(xiàn)x=1為對(duì)稱(chēng)軸的拋物線(xiàn)過(guò)A,B,C三點(diǎn).
(1)求該拋物線(xiàn)的函數(shù)解析式;
(2)已知直線(xiàn)的解析式為y=x+m,它與x軸交于點(diǎn)G,在梯形ABCO的一邊上取點(diǎn)P.
①當(dāng)m=0時(shí),如圖1,點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸與BC的交點(diǎn),過(guò)點(diǎn)P作PH⊥直線(xiàn)于點(diǎn)H,連結(jié)OP,試求△OPH的面積;
②當(dāng)m=﹣3時(shí),過(guò)點(diǎn)P分別作x軸、直線(xiàn)的垂線(xiàn),垂足為點(diǎn)E,F(xiàn).是否在線(xiàn)段BC存在這樣的點(diǎn)P,使以P,E,F(xiàn)為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)與拋物線(xiàn)相交于,兩點(diǎn).
(1)求拋物線(xiàn)的解析式.
(2)在直線(xiàn)下方的拋物線(xiàn)上求點(diǎn),求的面積等于20.
(3)若在拋物線(xiàn)上,作軸于點(diǎn),若和相似,求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com