【題目】近年來(lái),騎自行車(chē)旅行越來(lái)越受到人們的喜愛(ài),各種品牌的山地自行車(chē)相繼投放市場(chǎng),順風(fēng)車(chē)行經(jīng)營(yíng)的A型車(chē)去年3月份銷(xiāo)售總額為3.2萬(wàn)元,今年經(jīng)過(guò)改造升級(jí)后A型車(chē)每輛銷(xiāo)售價(jià)比去年增加400元,若今年3月份與去年3月份賣(mài)出的A型車(chē)數(shù)量相同,則今年3月份A型車(chē)銷(xiāo)售總額將比去年3月份銷(xiāo)售總額增加25%.
(1)求今年3月份A型車(chē)每輛銷(xiāo)售價(jià)多少元;
(2)該車(chē)行計(jì)劃4月份新進(jìn)一批A型車(chē)和B型車(chē)共50輛,且B型車(chē)的進(jìn)貨數(shù)量不超過(guò)A型車(chē)數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車(chē)獲利最多?
A,B兩種型號(hào)車(chē)的進(jìn)貨和銷(xiāo)售價(jià)格表:

A型車(chē)

B型車(chē)

進(jìn)貨價(jià)格(元/輛)

1100

1400

銷(xiāo)售價(jià)格(元/輛)

今年的銷(xiāo)售價(jià)格

2400

【答案】
(1)

解:設(shè)去年3月份A型車(chē)每輛銷(xiāo)售價(jià)x元,那么今年3月份每輛(x+400)元,

根據(jù)題意得 = ,

解之得x=1600,

經(jīng)檢驗(yàn),x=1600是方程的解.

x=1600時(shí),x+400═2000.

答:今年A型車(chē)每輛2000元


(2)

解:設(shè)今年4月份進(jìn)A型車(chē)m輛,則B型車(chē)(50﹣m)輛,獲得的總利潤(rùn)為y元,

根據(jù)題意得50﹣m≤2m,

解之得m≥16

∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,

∴y隨m 的增大而減小,

∴當(dāng)m=17時(shí),可以獲得最大利潤(rùn).

答:進(jìn)貨方案是A型車(chē)17輛,B型車(chē)33輛


【解析】(1)設(shè)去年3月份A型車(chē)每輛銷(xiāo)售價(jià)x元,那么今年3月份每輛(x+400)元,列出方程即可解決問(wèn)題.(2)設(shè)今年4月份進(jìn)A型車(chē)m輛,則B型車(chē)(50﹣m)輛,獲得的總利潤(rùn)為y元,先求出m的范圍,構(gòu)建一次函數(shù),利用函數(shù)性質(zhì)解決問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)閱讀理解:

如圖,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是 ;

(2)問(wèn)題解決:

如圖,在ABC中,D是BC邊上的中點(diǎn),DEDF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CFEF;

(3)問(wèn)題拓展:

如圖,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以C為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大連外語(yǔ)學(xué)院98000人極其喜歡數(shù)學(xué),此數(shù)表示為科學(xué)記數(shù)法(

A.0.98×105B.9.8×104C.98×l03D.9.8×l03

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)y=kx與y= 的圖象在第一象限內(nèi)交于點(diǎn)A,過(guò)點(diǎn)A作AD垂直x軸于點(diǎn)D,且SAOD=
(1)求反比例函數(shù)的關(guān)系式;
(2)若AD=1,試求k的值;
(3)若kx﹣ >0,請(qǐng)直接寫(xiě)出x的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)探究
(1)探究發(fā)現(xiàn) 數(shù)學(xué)活動(dòng)課上,小明說(shuō)“若直線y=2x﹣1向左平移3個(gè)單位,你能求平移后所得直線所對(duì)應(yīng)函數(shù)表達(dá)式嗎?”
經(jīng)過(guò)一番討論,小組成員展示了他們的解答過(guò)程:
在直線y=2x﹣1上任取點(diǎn)A(0,﹣1),
向左平移3個(gè)單位得到點(diǎn)A′(﹣3,﹣1)
設(shè)向左平移3個(gè)單位后所得直線所對(duì)應(yīng)的函數(shù)表達(dá)式為y=2x+n.
因?yàn)閥=2x+n過(guò)點(diǎn)A′(﹣3,﹣1),
所以﹣6+n=﹣1,
所以n=5,
填空:所以平移后所得直線所對(duì)應(yīng)函數(shù)表達(dá)式為
(2)類(lèi)比運(yùn)用 已知直線y=2x﹣1,求它關(guān)于x軸對(duì)稱的直線所對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)拓展運(yùn)用 將直線y=2x﹣1繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°,請(qǐng)直接寫(xiě)出:旋轉(zhuǎn)后所得直線所對(duì)應(yīng)的函數(shù)表達(dá)式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,⊙O和⊙O相交于A、B兩點(diǎn), 動(dòng)點(diǎn)P在⊙O上,且在⊙ 外,直線PA、PB分別交⊙O于C、D.問(wèn):⊙O的弦CD的長(zhǎng)是否隨點(diǎn)P的運(yùn)動(dòng)而發(fā)生變化?如果發(fā)生變化,請(qǐng)你確定CD最長(zhǎng)和最短時(shí)P的位置,如果不發(fā)生變化,請(qǐng)你給出證明;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)三角形的外心在這個(gè)三角形的一邊上,那么這個(gè)三角形是( )

A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列單項(xiàng)式:x,﹣3x2 , 5x3 , ﹣7x4 , 9x5 , …按此規(guī)律,可以得到第2016個(gè)單項(xiàng)式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)林業(yè)局要考察一種樹(shù)苗移植的成活率,對(duì)該地區(qū)這種樹(shù)苗移植成活的情況進(jìn)行調(diào)查統(tǒng)計(jì),并繪制了如圖所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息解決下列問(wèn)題:

(1)這種樹(shù)苗成活的頻率穩(wěn)定在___________,成活的概率估計(jì)值為___________.

(2)該地區(qū)已經(jīng)移植這種樹(shù)苗5萬(wàn)棵.

①估計(jì)這種樹(shù)苗成活___________萬(wàn)棵.

②如果該地區(qū)計(jì)劃成活18萬(wàn)棵這種樹(shù)苗,那么還需移植這種樹(shù)苗約多少萬(wàn)棵?

查看答案和解析>>

同步練習(xí)冊(cè)答案