【題目】如圖,拋物線y=ax2+bx+1經(jīng)過點(diǎn)(2,6),且與直線y=x+1相交于A,B兩點(diǎn),點(diǎn)A在y軸上,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(4,0).
(1)求拋物線的解析式;
(2)若P是直線AB上方該拋物線上的一個(gè)動點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D,交AB于點(diǎn)E,求線段PE的最大值;
(3)在(2)的條件,設(shè)PC與AB相交于點(diǎn)Q,當(dāng)線段PC與BE相互平分時(shí),請求出點(diǎn)Q的坐標(biāo).
【答案】(1)y=-x2+x+1;(2)當(dāng)x=2時(shí),PE的最大值為4;(3)點(diǎn)Q的坐標(biāo)為(,)或(,).
【解析】
(1)利用直線解析式可求得B點(diǎn)坐標(biāo),再利用待定系數(shù)法可求得拋物線解析式;
(2)設(shè)出P點(diǎn)坐標(biāo),則可表示出E點(diǎn)坐標(biāo),則可表示出PE的長,利用二次函數(shù)的性質(zhì)可求得PE的最大值;
(3)由條件可知四邊形BCEP為平行四邊形,可得BC=PE,則可求得P點(diǎn)坐標(biāo),利用中點(diǎn)坐標(biāo)可求得Q點(diǎn)坐標(biāo).
(1)∵BC⊥x軸,垂足為點(diǎn)C(4,0),且點(diǎn)B在直線y=x+1上,
∴點(diǎn)B的坐標(biāo)為(4,3),
∴拋物線y=ax2+bx+1經(jīng)過點(diǎn)(2,6)和點(diǎn)B(4,3),
∴,解得,
∴拋物線的解析式為y=-x2+x+1;
(2)設(shè)動點(diǎn)P的坐標(biāo)為(x,-x2+x+1),則點(diǎn)E的坐標(biāo)為:(x,x+1),
∵PD⊥x軸于點(diǎn)D,且點(diǎn)P在x軸上,
∴PE=PD-ED=-x2+x+1-(x+1)=-x2+4x=-(x-2)2+4,
∴當(dāng)x=2時(shí),PE的最大值為4;
(3)∵PC與BE互相平分,
∴四邊形BCEP為平行四邊形,
∴PE=BC,
∴-x2+4x=3即x2-4x+3=0,解得x1=1,x2=3,
∵點(diǎn)Q分別是PC,BE的中點(diǎn),且點(diǎn)Q在直線y=x+1
∴①當(dāng)x=1時(shí),點(diǎn)Q的橫坐標(biāo)為,點(diǎn)Q的坐標(biāo)為(,),
②當(dāng)x=3時(shí),點(diǎn)Q的橫坐標(biāo)為,點(diǎn)Q的坐標(biāo)為(,),
綜上可知點(diǎn)Q的坐標(biāo)為(,)或(,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國務(wù)院辦公廳在2015年3月16日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進(jìn)一步普及足球知識,傳播足球文化,我市某區(qū)在中小學(xué)舉行了“足球在身邊”知識競賽,各類獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請結(jié)合圖中信息,解答下列問題:
(1)獲得一等獎(jiǎng)的學(xué)生人數(shù);
(2)在本次知識競賽活動中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場足球友誼賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖,在平面直角坐標(biāo)系xOy中,拋物線()與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),經(jīng)過點(diǎn)A的直線l:與y軸負(fù)半軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,且CD=4AC.
(1)直接寫出點(diǎn)A的坐標(biāo),并求直線l的函數(shù)表達(dá)式(其中k,b用含a的式子表示);
(2)點(diǎn)E是直線l上方的拋物線上的動點(diǎn),若△ACE的面積的最大值為,求a的值;
(3)設(shè)P是拋物線的對稱軸上的一點(diǎn),點(diǎn)Q在拋物線上,以點(diǎn)A,D,P,Q為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對稱軸為直線x=﹣1,給出四個(gè)結(jié)論:①c>0;②若B(﹣,y1),C(﹣,y2)為圖象上的兩點(diǎn),則y1<y2;③2a﹣b=0;④<0,其中正確的結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 中,點(diǎn) E,F 分別在 BC 和 AB 上,BE=3,AF=2,BF=4,將△ BEF 繞點(diǎn) E 順時(shí)針旋轉(zhuǎn),得到△GEH,當(dāng)點(diǎn) H 落在 CD 邊上時(shí),F,H 兩點(diǎn)之間的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.
(1)加工成的正方形零件的邊長是多少mm?
(2)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長又分別為多少?請你計(jì)算.
(3)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某飛機(jī)場東西方向的地面l上有一長為1 km的飛機(jī)跑道MN(如圖),在跑道MN的正西端14.5千米處有一觀察站A.某時(shí)刻測得一架勻速直線降落的飛機(jī)位于點(diǎn)A的北偏西30°,且與點(diǎn)A相距15千米的B處;經(jīng)過1分鐘,又測得該飛機(jī)位于點(diǎn)A的北偏東60°,且與點(diǎn)A相距5千米的C處.
(1)該飛機(jī)航行的速度是多少千米/小時(shí)?(結(jié)果保留根號)
(2)如果該飛機(jī)不改變航向繼續(xù)航行,那么飛機(jī)能否降落在跑道MN之間?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2﹣2x﹣3的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,則下列說法錯(cuò)誤的是( 。
A. AB=4
B. ∠ABC=45°
C. 當(dāng)x>0時(shí),y<﹣3
D. 當(dāng)x>1時(shí),y隨x的增大而增大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com