【題目】(1)解不等式:
(2)如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,DF∥AC,求證:∠C=∠D.
【答案】(1)x≥2;(2)證明見解析.
【解析】
(1)先去分母,根據(jù)不等式的性質(zhì)解不等式即可;
(2)根據(jù)已知得到∠3=∠4,證得BD∥CE,根據(jù)平行線的性質(zhì)得到∠DBA=∠C,再證∠D=∠DBA,即可得到結(jié)論.
(1)解:不等式兩邊同時(shí)乘以12得:4(2x-1)≤3(3x+2)-1×12,
去括號(hào)得:8x-4≤9x+6-12,
移項(xiàng)得:8x-9x≤6-12+4,
合并同類項(xiàng)得:-x≤-2,
系數(shù)化為1得:x≥2,
即不等式的解集為:x≥2,
(2)證明:∵∠1=∠2,
又∵∠1=∠3,∠2=∠4,
∴∠3=∠4,
∴BD∥CE,
∴∠DBA=∠C,
∵DF∥AC,
∴∠D=∠DBA,
∴∠C=∠D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲于某日下午1時(shí)騎自行車從A地出發(fā)前往B地,乙于同日下午騎摩托車從A地出發(fā)前往B地,如圖所示,圖中折線PQR和線段MN分別表示甲和乙所行駛的路程和時(shí)間之間的關(guān)系圖象,試根據(jù)圖象回答下列問題.
(1)A、B兩地相距多少千米?甲出發(fā)幾小時(shí),乙才開始出發(fā)?
(2)甲騎自行車的平均速度是多少?乙騎摩托車的平均速度是多少?
(3)乙在該日下午幾時(shí)追上了甲?這時(shí)兩人離B地還有多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是-塊長方形空地,長為米,寬為米,現(xiàn)要對其進(jìn)行修整,在空白部分鋪設(shè)條寬度為米的小路,其余陰影部分種植草坪.
(1)用整式表示小路的面積;
(2)用整式表示草坪的面積;
(3)現(xiàn)有兩種修整方案,方案一:修建小路的寬度為米;方案二:修建小路的寬度為米.鋪設(shè)小路的造價(jià)為每平方米元,種植草坪的造價(jià)為每平方米元,請問選用哪種方案最劃算.( 寫出計(jì)算過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為B(4,0),另一個(gè)交點(diǎn)為A,且與y軸相交于C點(diǎn).
(1)求m的值及C點(diǎn)坐標(biāo);
(2)在直線BC上方的拋物線上是否存在一點(diǎn)M,使得它與B,C兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時(shí)M點(diǎn)坐標(biāo);若不存在,請簡要說明理由;
(3)P為拋物線上一點(diǎn),它關(guān)于直線BC的對稱點(diǎn)為Q.
①當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo);
②點(diǎn)P的橫坐標(biāo)為t(0<t<4),當(dāng)t為何值時(shí),四邊形PBQC的面積最大,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知∠A=α.
(1)如圖1,∠ABC、∠ACB的平分線相交于點(diǎn)D.
①當(dāng)α=70°時(shí),∠BDC度數(shù)= 度(直接寫出結(jié)果);
②∠BDC的度數(shù)為 (用含α的代數(shù)式表示);
(2)如圖2,若∠ABC的平分線與∠ACE角平分線交于點(diǎn)F,求∠BFC的度數(shù)(用含α的代數(shù)式表示).
(3)在(2)的條件下,將△FBC以直線BC為對稱軸翻折得到△GBC,∠GBC的角平分線與∠GCB的角平分線交于點(diǎn)M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】上午8時(shí),一條船從海島A出發(fā),以15海里/時(shí)的速度向正北航行,10時(shí)到達(dá)海島B處,從A,B望燈塔C,測得∠NAC=30,∠NBC=60.
(1)求從海島B到燈塔C的距離;
(2)這條船繼續(xù)向正北航行,問在上午或下午的什么時(shí)間小船與燈塔C的距離最短?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災(zāi),“旱災(zāi)無情人有情”.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鄉(xiāng)中小學(xué).已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門安排甲、乙兩種貨車時(shí)有幾種方案?請你幫助設(shè)計(jì)出來;
(3)在(2)的條件下,如果甲種貨車每輛需付運(yùn)費(fèi)400元,乙種貨車每輛需付運(yùn)費(fèi)360元.運(yùn)輸部門應(yīng)選擇哪種方案可使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形MNPQ中,動(dòng)點(diǎn)R從點(diǎn)N出發(fā),沿著方向運(yùn)動(dòng)至點(diǎn)M處停止.設(shè)點(diǎn)R運(yùn)動(dòng)的路程為x,△MNR的面積為y,如果y關(guān)于x的函數(shù)圖象如圖②所示,那么下列說法不正確的是( )
A.矩形MNPQ的周長是18B.當(dāng)x=2時(shí),y=5
C.當(dāng)x=6時(shí),y=10D.當(dāng)y=8時(shí),x=10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】倡導(dǎo)健康生活,推進(jìn)全民健身,某社區(qū)要購進(jìn)A,B兩種型號(hào)的健身器材若干套,A,B兩種型號(hào)健身器材的購買單價(jià)分別為每套310元,460元,且每種型號(hào)健身器材必須整套購買.
(1)若購買A,B兩種型號(hào)的健身器材共50套,且恰好支出20000元,求A,B兩種型號(hào)健身器材各購買多少套?
(2)若購買A,B兩種型號(hào)的健身器材共50套,且支出不超過18000元,求A種型號(hào)健身器材至少要購買多少套?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com