【題目】如圖,拋物線過x軸上兩點A(9,0),C(﹣3,0),且與y軸交于點B(0,﹣12).
(1)求拋物線的解析式;
(2)若M為線段AB上一個動點,過點M作MN平行于y軸交拋物線于點N.
①是否存在這樣的點M,使得四邊形OMNB恰為平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
②當(dāng)點M運(yùn)動到何處時,四邊形CBNA的面積最大?求出此時點M的坐標(biāo)及四邊形CBNA面積的最大值.
【答案】(1);(2)①不存在這樣的點M,理由見解析;②,四邊形CBNA面積的最大值為.
【解析】
(1)先根據(jù)點設(shè)拋物線的頂點式,再將點代入求解即可得;
(2)①先求出直線AB的解析式,從而可設(shè)點M、N的坐標(biāo)分別為,,從而可得,再根據(jù)平行四邊形的性質(zhì)可得,然后利用一元二次方程的根的判別式即可得出答案;
②先根據(jù)點的坐標(biāo)分別求出的長,再根據(jù)三角形面積公式可求出的面積,從而可得出四邊形CBNA面積的表達(dá)式,然后利用二次函數(shù)的性質(zhì)求解即可得.
(1)因為拋物線過x軸上兩點
所以設(shè)拋物線解析式為
將點代入得:
解得
則拋物線解析式為
即;
(2)如圖,設(shè)直線AB的解析式為
將點代入得:,解得
則直線AB的解析式為
由題意,可設(shè)點M的坐標(biāo)為,點N的坐標(biāo)為
則
①若四邊形OMNB為平行四邊形,則
即
整理得:
此方程的根的判別式,方程無實數(shù)根
則不存在這樣的點M,使得四邊形OMNB恰為平行四邊形;
②
點B到MN的距離等于,點A到MN的距離等于
因為M為線段AB上一個動點
所以
由二次函數(shù)的性質(zhì)可知,當(dāng)時,隨m的增大而增大;當(dāng)時,隨m的增大而減小
則當(dāng)時,取得最大值,最大值為
此時,
故點M的坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在三角形中,若有兩條中線互相垂直,則稱該三角形為中垂三角形.
(1)如圖(1),△ABC是中垂三角形,BD,AE分別是AC,BC邊上的中線,且BD⊥AE于點O,若∠BAE=45°,求證:△ABC是等腰三角形.
(2)如圖(2),在中垂三角形ABC中,AE,BD分別是邊BC,AC上的中線,且AE⊥BD于點O,猜想AB2,BC2,AC2之間的數(shù)量關(guān)系,并加以證明.
(3)如圖(3),四邊形ABCD是菱形,對角線AC,BD交于點O,點M,N分別是OA,OD的中點,連接BM,CN并延長,交于點E.
①求證:△BCE是中垂三角形;
②若,請直接寫出BE2+CE2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點D在邊BC上,點E在線段AD上.
(1)若∠BAC=∠BED=2∠CED=α,
①若α=90°,AB=AC,過C作CF⊥AD于點F,求的值;
②若BD=3CD,求的值;
(2)AD為△ABC的角平分線,AE=ED=2,AC=5,tan∠BED=2,直接寫出BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在疫情期間,某地推出線上名師公益大課堂,為廣大師生、其他社會人士提供線上專業(yè)知識學(xué)習(xí)、心理健康疏導(dǎo).參與學(xué)習(xí)第一批公益課的人數(shù)達(dá)到2萬人,因該公益課社會反響良好,參與學(xué)習(xí)第三批公益課的人數(shù)達(dá)到2.42萬人.參與學(xué)習(xí)第二批、第三批公益課的人數(shù)的增長率相同.
(1)求這個增長率;
(2)據(jù)大數(shù)據(jù)統(tǒng)計,參與學(xué)習(xí)第三批公益課的人數(shù)中,師生人數(shù)在參與學(xué)習(xí)第二批公益課的師生人數(shù)的基礎(chǔ)上增加了80%;但因為已經(jīng)部分復(fù)工,其他社會人士的人數(shù)在參與學(xué)習(xí)第二批公益課的其他社會人士人數(shù)的基礎(chǔ)上減少了60%.求參與學(xué)習(xí)第三批公益課的師生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為推動“時刻聽黨話 永遠(yuǎn)跟黨走”校園主題教育活動,計劃開展四項活動:A:黨史演講比賽,B:黨史手抄報比賽,C:黨史知識競賽,D:紅色歌詠比賽.校團(tuán)委對學(xué)生最喜歡的一項活動進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2兩幅不完整的統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:
(1)本次共調(diào)查了 名學(xué)生;
(2)將圖1的統(tǒng)計圖補(bǔ)充完整;
(3)已知在被調(diào)查的最喜歡“黨史知識競賽”項目的4個學(xué)生中只有1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生參加該項目比賽,請用畫樹狀圖或列表的方法,求出恰好抽到一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)企業(yè)信息化發(fā)展水平,從該地區(qū)中隨機(jī)抽取50家企業(yè)調(diào)研,針對體現(xiàn)企業(yè)信息化發(fā)展水平的A和B兩項指標(biāo)進(jìn)行評估,獲得了它們的成績(十分制),并對數(shù)據(jù)(成績)進(jìn)行整理、描述和分析.下面給出了部分信息.
a.A項指標(biāo)成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,,,):
b.A項指標(biāo)成績在這一組的是:
7.2 7.3 7.5 7.67 7.7 7.71 7.75 7.82 7.86 7.9 7.92 7.93 7.97
c.兩項指標(biāo)成績的平均數(shù)、中位數(shù)、眾數(shù)如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
A項指標(biāo)成績 | 7.37 | m | 8.2 |
B項指標(biāo)成績 | 7.21 | 7.3 | 8 |
根據(jù)以上信息,回答下列問題:
(1)寫出表中m的值
(2)在此次調(diào)研評估中,某企業(yè)A項指標(biāo)成績和B項指標(biāo)成績都是7.5分,該企業(yè)成績排名更靠前的指標(biāo)是______________(填“A”或“B”),理由是_____________;
(3)如果該地區(qū)有500家企業(yè),估計A項指標(biāo)成績超過7.68分的企業(yè)數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B,C均為格點.
(1)的面積等于;
(2)請用無刻度的直尺,在如圖所示的網(wǎng)格中畫出的角平分線BD,并在AB邊上畫出點P,使得,并簡要說明的角平分線BD及點P的位置是如何找到的(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AD=4,∠C=30°,⊙O與AD相交于點F,AB為⊙O的直徑,⊙O與CD的延長線相切于點E,則劣弧FE的長為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院醫(yī)生為了研究該院某種疾病的診斷情況,需要調(diào)查來院就診的病人的兩個生理指標(biāo),,于是他分別在這種疾病的患者和非患者中,各隨機(jī)選取20人作為調(diào)查對象,將收集到的數(shù)據(jù)整理后,繪制統(tǒng)計圖如下:
注“●”表示患者,“▲”表示非患者.
根據(jù)以上信息,回答下列問題:
(1)在這40名被調(diào)查者中,
①指標(biāo)低于0.4的有 人;
②將20名患者的指標(biāo)的平均數(shù)記作,方差記作,20名非患者的指標(biāo)的平均數(shù)記作,方差記作,則 , (填“>”,“=”或“<”);
(2)來該院就診的500名未患這種疾病的人中,估計指標(biāo)低于0.3的大約有 人;
(3)若將“指標(biāo)低于0.3,且指標(biāo)低于0.8”作為判斷是否患有這種疾病的依據(jù),則發(fā)生漏判的概率多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com