【題目】在疫情期間,某地推出線上名師公益大課堂,為廣大師生、其他社會人士提供線上專業(yè)知識學習、心理健康疏導.參與學習第一批公益課的人數(shù)達到2萬人,因該公益課社會反響良好,參與學習第三批公益課的人數(shù)達到2.42萬人.參與學習第二批、第三批公益課的人數(shù)的增長率相同.
(1)求這個增長率;
(2)據(jù)大數(shù)據(jù)統(tǒng)計,參與學習第三批公益課的人數(shù)中,師生人數(shù)在參與學習第二批公益課的師生人數(shù)的基礎(chǔ)上增加了80%;但因為已經(jīng)部分復工,其他社會人士的人數(shù)在參與學習第二批公益課的其他社會人士人數(shù)的基礎(chǔ)上減少了60%.求參與學習第三批公益課的師生人數(shù).
【答案】(1)參與學習第二批、第三批公益課的人數(shù)的增長率為10%;(2)參與第三批公益課的師生人數(shù)為1.98萬人.
【解析】
(1)設(shè)增長率為x,根據(jù)“第一批公益課受益學生2萬人次,第三批公益課受益學生2.42萬人次”可列方程求解;
(2)設(shè)參與學習第二批公益課的人數(shù)中,師生有萬人,其他人士有萬人.根據(jù)師生人數(shù)在參與學習第二批公益課的師生人數(shù)的基礎(chǔ)上增加了80%,社會人士的人數(shù)在參與學習第二批公益課的其他社會人士人數(shù)的基礎(chǔ)上減少了60%,列二元一次方程組求解即可.
(1)設(shè)參與學習第二批、第三批公益課的人數(shù)的增長率為,根據(jù)題意,得
解方程,得,(舍去).
答:參與學習第二批、第三批公益課的人數(shù)的增長率為10%.
(2)設(shè)參與學習第二批公益課的人數(shù)中,師生有萬人,其他人士有萬人. 根據(jù)題意,得
解方程組,得
.
答:參與第三批公益課的師生人數(shù)為1.98萬人.
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程kx2﹣2(k+1)x+k﹣1=0有兩個不相等的實數(shù)根x1,x2.
(1)求k的取值范圍;
(2)是否存在實數(shù)k,使=1成立?若存在,請求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某班學生每天使用零花錢的情況,小明隨機調(diào)查了15名同學,結(jié)果如表:
每天使用零花錢(單位:元) | 0 | 2 | 3 | 4 | 5 |
人數(shù) | 1 | 4 | 5 | 3 | 2 |
關(guān)于這15名同學每天使用零花錢的情況,下列說法正確的是( 。
A.中位數(shù)是3元B.眾數(shù)是5元
C.平均數(shù)是2.5元D.方差是4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,先有一張矩形紙片點分別在矩形的邊上,將矩形紙片沿直線MN折疊,使點落在矩形的邊上,記為點,點落在處,連接,交于點,連接.下列結(jié)論:
②四邊形是菱形;
③重合時,;
④的面積的取值范圍是
其中正確的是_____(把正確結(jié)論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A與點B關(guān)于原點對稱,點C在第四象限,∠ACB=90°.點D是軸正半軸上一點,AC平分∠BAD,E是AD的中點,反比例函數(shù)()的圖象經(jīng)過點A,E.若△ACE的面積為6,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,邊長為1的正方形OABC的頂點O與原點重合,頂點A,C分別在x軸、y軸上,反比例函數(shù)y=(k≠0,x>0)的圖象與正方形的兩邊AB、BC分別交于點M、N,連接OM、ON、MN.若∠MON=45°,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△A′B′C是兩個完全重合的直角三角板,∠B=30°,斜邊長為10cm.三角板A′B′C繞直角頂點C順時針旋轉(zhuǎn),當點A′落在AB邊上時,CA′旋轉(zhuǎn)所構(gòu)成的扇形的弧長為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,半徑為的⊙B經(jīng)過原點O,且與x,y軸分交于點A,C,點C的坐標為(0,2),AC的延長線與⊙B的切線OD交于點D,則經(jīng)過D點的反比例函數(shù)的解析式為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E,F分別是AB,CD的中點.
(1)求證:四邊形AEFD是平行四邊形;(2)若∠A=60°,AB=2AD=4,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com