【題目】如圖1是某商場從一樓到二樓的自動扶梯,圖2是側(cè)面示意圖,MN是二樓樓頂,MNPQ,點CMN上,且位于自動扶梯頂端B點的正上方,BCMN.測得AB10米,在自動扶梯底端A處測得點C的仰角為50°,點B的仰角為30°,求二樓的層高BC(結(jié)果保留根號)

(參考數(shù)據(jù):sin50°0.77,cos50°0.64,tan50°1.20

【答案】

【解析】

延長CBPQ于點D,在RtADB中,求出BD,AD的長,然后在直角CDA中利用三角函數(shù)即可求得CD的長,則BC即可得到.

解:延長CBPQ于點D

MNPQ,BCMN,

BCPQ

RtABD中,∵AB10米,∠BAD30°,

(米),(米),

RtCDA中,∠CDA90°,∠CAD50°

(米),

(米).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在RtABC中,∠BAC90°,CD為∠ACB的平分線,將∠ACB沿CD所在的直線對折,使點B落在點B′處,連結(jié)AB',BB',延長CDBB'于點E,設(shè)∠ABC2α(0°<α<45°).

1)如圖1,若ABAC,求證:CD2BE;

2)如圖2,若ABAC,試求CDBE的數(shù)量關(guān)系(用含α的式子表示);

3)如圖3,將(2)中的線段BC繞點C逆時針旋轉(zhuǎn)角(α+45°),得到線段FC,連結(jié)EFBC于點O,設(shè)COE的面積為S1,△COF的面積為S2,求(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形一條邊的邊長為3,它的另兩條邊的邊長是關(guān)于x的一元二次方程x2﹣12x+k=0的兩個根,則k的值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展了手機伴我健康行主題活動.他們隨機抽取部分學(xué)生進行手機使用目的每周使用手機時間的問卷調(diào)查,并繪制成如圖的統(tǒng)計圖。已知查資料人人數(shù)是40人。

請你根據(jù)以上信息解答以下問題

1)在扇形統(tǒng)計圖中,玩游戲對應(yīng)的圓心角度數(shù)是_______________。

2)補全條形統(tǒng)計圖

3)該校共有學(xué)生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線的頂點為A(﹣1,4),且經(jīng)過點B(﹣2,3),與x軸分別交于C、D兩點(點C在點D的左側(cè)).

1)求該拋物線對應(yīng)的函數(shù)表達式;

2)如圖1,點M是拋物線上的一個動點,且在直線OB的上方,過點Mx軸的平行線與直線OB交于點N,連接OM

①求MN的最大值;

②當OMN為直角三角形時,直接寫出點M的坐標;

3)如圖2,過點A的直線交x軸于點E,且AEy軸,點P是拋物線上A、D之間的一個動點,直線PC、PDAE分別交于F、G兩點.當點P運動時,EF+EG的和是否為定值?若是,試求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,EAB的中點,將ADE沿直線DE折疊后,點A落在點F處,DF交對角線ACG,則FG的長是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,拋物線m>0)與x軸交于A,B兩點,點B在點A的右側(cè),頂點為C,拋物線與y軸交于點D,直線CAy軸于E,且

1)求點A,點B的坐標;

2)將BCO繞點C逆時針旋轉(zhuǎn)一定角度后,點B與點A重合,點O恰好落在y軸上,

①求直線CE的解析式;

②求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,點EF是對角線BD上的兩點,且BEDF

1)如果四邊形AECF是平行四邊形,求證:四邊形ABCD也是平行四邊形;

2)如果四邊形AECF是菱形,求證:四邊形ABCD也是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,點,在軸上任取一點,連接,作的垂直平分線,過點軸的垂線,交于點.設(shè)點的坐標為

(Ⅰ)當的坐標取時,點的坐標為________

(Ⅱ)求,滿足的關(guān)系式;

(Ⅲ)是否存在點,使得恰為等邊三角形?若存在,求點的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案