【題目】在平面直角坐標(biāo)系中,點(diǎn),在軸上任取一點(diǎn),連接,作的垂直平分線(xiàn),過(guò)點(diǎn)作軸的垂線(xiàn),與交于點(diǎn).設(shè)點(diǎn)的坐標(biāo)為.
(Ⅰ)當(dāng)的坐標(biāo)取時(shí),點(diǎn)的坐標(biāo)為________;
(Ⅱ)求,滿(mǎn)足的關(guān)系式;
(Ⅲ)是否存在點(diǎn),使得恰為等邊三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(Ⅰ);(Ⅱ);(Ⅲ)存在,, .
【解析】
(Ⅰ)作AN⊥PM于N,根據(jù)線(xiàn)段垂直平分線(xiàn)的性質(zhì)得到PA=PM,根據(jù)勾股定理計(jì)算;
(Ⅱ)分點(diǎn)M在x軸的正半軸上、點(diǎn)M在x軸的負(fù)半軸上兩種情況,根據(jù)勾股定理列式計(jì)算;
(Ⅲ)根據(jù)勾股定理求出MA,根據(jù)(Ⅱ)中結(jié)論列出方程,解方程即可.
(Ⅰ)作AN⊥PM于N,
則四邊形AOMN是矩形,
∴AN=OM=3,MN=OA=2,
∵l1是AM的垂直平分線(xiàn),
∴PA=PM,
在Rt△APN中,AN2+PN2=AP2,即32+(y-2)2=y2,
解得,y=,
∴點(diǎn)P的坐標(biāo)為(3,),
故答案為:(3,);
(Ⅱ)如圖,過(guò)點(diǎn)作于,連接,
可得為矩形,可得,
∵軸,點(diǎn)的坐標(biāo)為,
∴點(diǎn)的坐標(biāo)為,
∴,,
∵點(diǎn)在的垂直平分線(xiàn)上,
∴,
在中,,且,
∴,
∴.
(Ⅲ)由(Ⅱ)知,,要使△MPA為等邊三角形,只需MA=MP即可,
∵點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)M的坐標(biāo)為(0,x),
∴AM=,
則,
解得,x=±2,
∴或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是某商場(chǎng)從一樓到二樓的自動(dòng)扶梯,圖2是側(cè)面示意圖,MN是二樓樓頂,MN∥PQ,點(diǎn)C在MN上,且位于自動(dòng)扶梯頂端B點(diǎn)的正上方,BC⊥MN.測(cè)得AB=10米,在自動(dòng)扶梯底端A處測(cè)得點(diǎn)C的仰角為50°,點(diǎn)B的仰角為30°,求二樓的層高BC(結(jié)果保留根號(hào))
(參考數(shù)據(jù):sin50°=0.77,cos50°=0.64,tan50°=1.20)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分線(xiàn),以AB上一點(diǎn)O為圓心,AD為弦作⊙O.
(1)用直尺和圓規(guī)在圖中作出⊙O(不寫(xiě)作法,保留作圖痕跡),判斷直線(xiàn)BC與⊙O的位置關(guān)系,并說(shuō)明理由;(友情提醒:必須作在答題卷上哦。
(2)若AC=3,BC=4,求⊙O的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個(gè)電線(xiàn)桿,某人在河岸MN上的A處測(cè)得∠DAB=30°,然后沿河岸走了100m到達(dá)B處,測(cè)得∠CBF=70°,求河流的寬度(結(jié)果精確到個(gè)位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式組 請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來(lái).
(Ⅳ)原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△BED都是等腰直角三角形,∠ABC=∠DBE=90°,AD,CE相交于點(diǎn)G
(1)求證:△ABD≌△CBE;
(2)求證:AD⊥CE;
(3)連接AE,CD,若AE=CD=5,求△ABC和△BED的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線(xiàn)與AB的垂直平分線(xiàn)交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC的度數(shù)是( 。
A. 106°B. 108°C. 110°D. 112°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在,,.點(diǎn)P是平面內(nèi)不與點(diǎn)A,C重合的任意一點(diǎn).連接AP,將線(xiàn)段AP繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)α得到線(xiàn)段DP,連接AD,BD,CP.
(1)觀察猜想
如圖1,當(dāng)時(shí),的值是 ,直線(xiàn)BD與直線(xiàn)CP相交所成的較小角的度數(shù)是 .
(2)類(lèi)比探究
如圖2,當(dāng)時(shí),請(qǐng)寫(xiě)出的值及直線(xiàn)BD與直線(xiàn)CP相交所成的小角的度數(shù),并就圖2的情形說(shuō)明理由.
(3)解決問(wèn)題
當(dāng)時(shí),若點(diǎn)E,F分別是CA,CB的中點(diǎn),點(diǎn)P在直線(xiàn)EF上,請(qǐng)直接寫(xiě)出點(diǎn)C,P,D在同一直線(xiàn)上時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,四邊形中,,,從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度,按的順序在邊上勻速運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,的面積為,關(guān)于的函數(shù)圖像如圖②所示,當(dāng)運(yùn)動(dòng)到中點(diǎn)時(shí),的面積為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com