【題目】如圖,在ABC中,ABAC5,sinC,將ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到ADE,點(diǎn)B、C分別與點(diǎn)DE對應(yīng),AD與邊BC交于點(diǎn)F.如果AEBC,那么BF的長是____

【答案】

【解析】

如圖,過AAHBCH,得到∠AHB=AHC=90°,BH=CH,根據(jù)三角函數(shù)的定義得到AH=3,求得CH=BH4,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BAF=CAE,根據(jù)平行線的性質(zhì)得到∠CAE=C,從而得到∠BAF=B,由等角對等邊得到AF=BF,設(shè)AF=BF=x,得到FH=4x,根據(jù)勾股定理即可得到結(jié)論.

如圖,過AAHBCH,∴∠AHB=AHC=90°,BH=CH

AB=AC=5,sinC,∴AH=3,∴CH=BH4

∵將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ADE,∴∠BAF=CAE

AEBC,∴∠CAE=C

∵∠B=C,∴∠BAF=B,∴AF=BF,設(shè)AF=BF=x,∴FH=4x

AF2=AH2+FH2,∴x2=32+4x2,解得:x,∴BF

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出如下規(guī)定:兩個(gè)圖形,點(diǎn)上任一點(diǎn),點(diǎn)上任一點(diǎn),如果線段的長度存在最小值,就稱該最小值為兩個(gè)圖形之間的距離.

在平面直角坐標(biāo)系xOy中,0為坐標(biāo)原點(diǎn).

1)點(diǎn)的坐標(biāo)為,則點(diǎn)和射線之間的距離為______,點(diǎn)和射線之間的距離為    

2)如果直線和雙曲線之間的距離為,那么____;(可在圖1中進(jìn)行研究)

3)點(diǎn)的坐標(biāo)為,將射線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),得到射線,在坐標(biāo)平面內(nèi)所有和射線之間的距離相等的點(diǎn)所組成的圖形記為圖形

①請?jiān)趫D2中畫出圖形,井描述圖形的組成部分:(若涉及平面中某個(gè)區(qū)域時(shí)可以用陰影表示)

②將射線組成的圖形記為圖形,拋物線與圖形的公共部分記為圖形,請直接寫出圖形和圖形之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:點(diǎn)PABC內(nèi)部或邊上的點(diǎn)(頂點(diǎn)除外),在PAB,PBC,PCA中,若至少有一個(gè)三角形與ABC相似,則稱點(diǎn)PABC的自相似點(diǎn).

例如:圖1,點(diǎn)PABC的內(nèi)部,PBC=APCB=ABC,BCP∽△ABC,故點(diǎn)PABC的自相似點(diǎn).

請你運(yùn)用所學(xué)知識(shí),結(jié)合上述材料,解決下列問題:

在平面直角坐標(biāo)系中,點(diǎn)M曲線C上的任意一點(diǎn),點(diǎn)Nx軸正半軸上的任意一點(diǎn).

(1) 如圖2,點(diǎn)P是OM上一點(diǎn),ONP=M, 試說明點(diǎn)P是MON的自相似點(diǎn); 當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求點(diǎn)P 的坐標(biāo);

(2) 如圖3,當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求MON的自相似點(diǎn)的坐標(biāo);

(3) 是否存在點(diǎn)M和點(diǎn)N,使MON無自相似點(diǎn),?若存在,請直接寫出這兩點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣5x+5x軸、y軸分別交于A,C兩點(diǎn),拋物線yx2+bx+c經(jīng)過A,C兩點(diǎn),與x軸交于另一點(diǎn)B

1)求拋物線解析式及B點(diǎn)坐標(biāo);

2x2+bx+c5x+5的解集   

3)若點(diǎn)M在第一象限內(nèi)拋物線上一動(dòng)點(diǎn),連接MA、MB,當(dāng)點(diǎn)M運(yùn)動(dòng)到某一位置時(shí),ABM面積為ABC的面積的倍,求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形在平面直角坐標(biāo)系中,點(diǎn),分別在軸,軸的正半軸上,等腰直角三角形的直角頂點(diǎn)在原點(diǎn),,分別在,上,且,.將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得點(diǎn),旋轉(zhuǎn)后的對應(yīng)點(diǎn)為

(Ⅰ)①如圖①,求的長;②如圖②,連接,求證;

(Ⅱ)將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一周,當(dāng)時(shí),求點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y6x+4的頂點(diǎn)A在直線ykx2上.

1)求直線的函數(shù)表達(dá)式;

2)現(xiàn)將拋物線沿該直線方向進(jìn)行平移,平移后的拋物線的頂點(diǎn)為A,與直線的另一交點(diǎn)為B,與x軸的右交點(diǎn)為C(點(diǎn)C不與點(diǎn)A重合),連接BCAC

。┤鐖D,在平移過程中,當(dāng)點(diǎn)B在第四象限且ABC的面積為60時(shí),求平移的距離AA的長;

ⅱ)在平移過程中,當(dāng)ABC是以AB為一條直角邊的直角三角形時(shí),求出所有滿足條件的點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角ABC中,邊BC長為18,高AD長為12

1)如圖,矩形EFCH的邊GHBC邊上,其余兩個(gè)頂點(diǎn)E、F分別在AB、AC邊上,EFAD于點(diǎn)K,求的值;

2)設(shè)EHx,矩形EFGH的面積為S,求Sx的函數(shù)關(guān)系式,并求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在面積為60的平行四邊形ABCD中,過點(diǎn)AAE垂直于直線BC于點(diǎn)E,作AF垂直于直線CD于點(diǎn)F,若AB=10,BC=12,則CE+CF的值為(

A. 22-11B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的內(nèi)心,的延長線和的外接圓圓相交于點(diǎn),過作直線

1)求證:是圓的切線;

2)若,,求優(yōu)弧的長.

查看答案和解析>>

同步練習(xí)冊答案