【題目】二次函數(shù)圖象如圖所示,下列結(jié)論:①;②;③當時,;④;⑤若,且,則.其中正確的有______.
【答案】②③⑤
【解析】
根據(jù)拋物線開口方向得a<0,由拋物線對稱軸為直線x==1,得到b=2a>0,即2a+b=0,由拋物線與y軸的交點位置得到c>0,所以abc<0;根據(jù)二次函數(shù)的性質(zhì)得當x=1時,函數(shù)有最大值a+b+c,則當m≠1時,a+b+c>am2+bm+c,即a+b>am2+bm;根據(jù)拋物線的對稱性得到拋物線與x軸的另一個交點在(1,0)的右側(cè),則當x=1時,y<0,所以ab+c<0;把ax12+bx1=ax22+bx2先移項,再分解因式得到(x1x2)[a(x1+x2)+b]=0,而x1≠x2,則a(x1+x2)+b=0,即x1+x2=,然后把b=2a代入計算得到x1+x2=2.
∵拋物線開口向下,
∴a<0,
∵拋物線對稱軸為直線x==1,
∴b=2a>0,即2a+b=0,所以②正確;
∵拋物線與y軸的交點在x軸上方,
∴c>0,
∴abc<0,所以①錯誤;
∵拋物線對稱軸為直線x=1,
∴函數(shù)的最大值為a+b+c,
∴當m≠1時,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正確;
∵拋物線與x軸的一個交點在(3,0)的左側(cè),而對稱軸為直線x=1,
∴拋物線與x軸的另一個交點在(1,0)的右側(cè)
∴當x=1時,y<0,
∴ab+c<0,所以④錯誤;
∵ax12+bx1=ax22+bx2,
∴ax12+bx1ax22bx2=0,
∴a(x1+x2)(x1x2)+b(x1x2)=0,
∴(x1x2)[a(x1+x2)+b]=0,
而x1≠x2,
∴a(x1+x2)+b=0,即x1+x2=,
∵b=2a,
∴x1+x2=2,所以⑤正確.
綜上所述,正確的有②③⑤.
故答案為②③⑤.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx﹣3與x軸交于A(1,0)、B兩點,與y軸交于點C,拋物線的對稱軸為直線x=2,交拋物線于點D,交x軸于點E.
(1)請直接寫出:拋物線的函數(shù)解析式及點B、點D的坐標;
(2)拋物線對稱軸上的一動點P從點D出發(fā),以每秒1個單位的速度向上運動,連接OP,BP,設(shè)運動時間為t秒(t>0).在點P的運動過程中,請求出:當t為何值時,∠OPB=90°?
(3)如圖2,點Q在拋物線上運動(點Q不與點A、B重合),當△QBC的面積與△ABC的面積相等時,請求出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內(nèi)部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的頂點坐標為A(1,9),且其圖象經(jīng)過點(﹣1,5)
(1)求此二次函數(shù)的解析式;
(2)寫出不等式ax2+bx+c>0的解集;
(3)若該函數(shù)圖象與x軸的交點為B、C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)()的圖象如圖所示,下列結(jié)論:①;②;③為任意實數(shù),則;④;⑤,其中正確的有( )
A.①②③B.②④C.②⑤D.②③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.
(1)直接寫出點A、B、C的坐標;
(2)在拋物線的對稱軸上存在一點P,使得PA+PC的值最小,求此時點P的坐標;
(3)點D是第一象限內(nèi)拋物線上的一個動點(與點C、B不重合)過點D作DF⊥x軸于點F,交直線BC于點E,連接BD,直線BC把△BDF的面積分成兩部分,使,請求出點D的坐標;
(4)若M為拋物線對稱軸上一動點,使得△MBC為直角三角形,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙O于E,交AB于點D,連接AE,∠E=30°,AC=5.
(1)求CE的長;
(2)求S△ADC:S△ACE的比值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線經(jīng)過A(-1,0)、B(3,0)點,直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)在直線l上確定一點P,使△PAC的周長最小,求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=2x2的圖象如圖所示,坐標原點O,點B1,B2,B3在y軸的正半軸上,點A1,A2,A3在二次函數(shù)y=2x2位于第一象限的圖象上,若△A1OB1,△A2B1B2,△A3B2B3都為等腰直角三角形,且點A1,A2,A3均為直角頂點,則點A3的坐標是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com