【題目】如圖,在△ABC中,∠B=90°,BC=8 AB=6cm,動點(diǎn)P從點(diǎn)A開始沿邊AB向點(diǎn)B以1cm/s的速度移動,動點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C以2cm/s的速度移動.若P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā),在運(yùn)動過程中,△PBQ的最大面積是( 。
A. 18cm2 B. 12cm2 C. 9cm2 D. 3cm2
【答案】C
【解析】
試題先根據(jù)已知求邊長BC,再根據(jù)點(diǎn)P和Q的速度表示BP和BQ的長,設(shè)△PBQ的面積為S,利用直角三角形的面積公式列關(guān)于S與t的函數(shù)關(guān)系式,并求最值即可.
∵tan∠C=,AB=6cm, ∴=, ∴BC=8,
由題意得:AP=t,BP=6﹣t,BQ=2t,
設(shè)△PBQ的面積為S,則S=×BP×BQ=×2t×(6﹣t),
S=﹣t2+6t=﹣(t2﹣6t+9﹣9)=﹣(t﹣3)2+9, P:0≤t≤6,Q:0≤t≤4,
∴當(dāng)t=3時(shí),S有最大值為9, 即當(dāng)t=3時(shí),△PBQ的最大面積為9cm2;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系xOy中,A(4,0)、B(0,3)、C(4,3),I是△ABC的內(nèi)心,將△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后,I的對應(yīng)點(diǎn)I′的坐標(biāo)為( )
A. (-2,3) B. (-3,2) C. (3,-2) D. (2,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,AE=CD,AD,BE相交于點(diǎn)P,BQ⊥AD于點(diǎn)Q,PQ=3,PE=1.
(1)求證:∠ABE=∠CAD;
(2)求BP和AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.
(1)求證:四邊形ABEF是平行四邊形;
(2)當(dāng)∠ABC為多少度時(shí),四邊形ABEF為矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某瓜農(nóng)采用大棚栽培技術(shù)種植了一畝地的良種西瓜,這畝地產(chǎn)西瓜600個(gè),在西瓜上市前該瓜農(nóng)隨機(jī)摘下了10個(gè)成熟的西瓜,稱重如下:
西瓜質(zhì)量(單位:千克) | 5.4 | 5.3 | 5.0 | 4.8 | 4.4 | 4.0 |
西瓜數(shù)量(單位:個(gè)) | 1 | 2 | 3 | 2 | 1 | 1 |
(1)這10個(gè)西瓜質(zhì)量的眾數(shù)和中位數(shù)分別是 和 ;
(2)計(jì)算這10個(gè)西瓜的平均質(zhì)量,并根據(jù)計(jì)算結(jié)果估計(jì)這畝地共可收獲西瓜約多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為等邊三角形,點(diǎn)由點(diǎn)出發(fā),在延長線上運(yùn)動,連接,以為邊作等邊三角形,連接.
(1)證明:;
(2)若,點(diǎn)的運(yùn)動速度為每秒,運(yùn)動時(shí)間為秒,則為何值時(shí),?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長方形的邊,分別在軸,軸上,點(diǎn)在邊上,將該長方形沿折疊,點(diǎn)恰好落在邊上的點(diǎn)處,若,,則所在直線的表達(dá)式為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AD 是 BC 邊上的高,且∠ACB=∠BAD,AE 平分∠CAD,交 BC于點(diǎn) E,過點(diǎn) E 作 EF∥AC,分別交 AB、AD 于點(diǎn) F、G.則下列結(jié)論:①∠BAC=90°;②∠AEF=∠BEF; ③∠BAE=∠BEA; ④∠B=2∠AEF,其中正確的有( )
A. 4 個(gè)B. 3 個(gè)C. 2 個(gè)D. 1 個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com