【題目】如圖,在△ABC 中,AD 是 BC 邊上的高,且∠ACB=∠BAD,AE 平分∠CAD,交 BC于點 E,過點 E 作 EF∥AC,分別交 AB、AD 于點 F、G.則下列結論:①∠BAC=90°;②∠AEF=∠BEF; ③∠BAE=∠BEA; ④∠B=2∠AEF,其中正確的有( )
A. 4 個B. 3 個C. 2 個D. 1 個
【答案】B
【解析】
利用高線和同角的余角相等,三角形內角和定理即可證明①,再利用等量代換即可得到③
④均是正確的,②缺少條件無法證明.
解:由已知可知∠ADC=∠ADB=90°,
∵∠ACB=∠BAD
∴90°-∠ACB=90°-∠BAD,即∠CAD=∠B,
∵三角形ABC的內角和=∠ACB+∠B+∠BAD+∠CAD=180°,
∴∠CAB=90°,①正確,
∵AE平分∠CAD,EF∥AC,
∴∠CAE=∠EAD=∠AEF,∠C=∠FEB=∠BAD,②錯誤,
∵∠BAE=∠BAD+∠DAE,∠BEA=∠BEF+∠AEF,
∴∠BAE=∠BEA,③正確,
∵∠B=∠DAC=2∠CAE=2∠AEF,④正確,
綜上正確的一共有3個,故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小麗假期在娛樂場游玩時,想要利用所學的數(shù)學知識測量某個娛樂場地所在山坡AE的長度.她先在山腳下點E處測得山頂A的仰角是30°,然后,她沿著坡度是i=1:1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內,且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度.(參考數(shù)據(jù): ≈1.41,結果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學課上,老師提出如下問題:
尺規(guī)作圖:過直線外一點作已知直線的平行線.
已知:直線l及其外一點A.
求作:l的平行線,使它經(jīng)過點A.
小云的作法如下:
(1)在直線l上任取一點B;
(2)以B為圓心,BA長為半徑作弧,交直線l于點C;
(3)分別以A、C為圓心,BA長為半徑作弧,兩弧相交于點D;
(4)作直線AD.直線AD即為所求.
小云作圖的依據(jù)是_______________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的周長為36,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為( )
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某家電銷售商城電冰箱的銷售價為每臺2100元,空調的銷售價為每臺1750元,每臺電冰箱的進價比每臺空調的進價多400元,商城用80000元購進電冰箱的數(shù)量與用64000元購進空調的數(shù)量相等.
(1)求每臺電冰箱與空調的進價分別是多少?
(2)現(xiàn)在商城準備一次購進這兩種家電共100臺,設購進電冰箱臺,這100臺家電的銷售總利潤為元,要求購進空調數(shù)量不超過電冰箱數(shù)量的2倍,試確定獲利最大的方案以及最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張強在一次投擲鉛球時,剛出手時鉛球離地面m,鉛球運行的水平距離為4m時,達到最高,高度為3m,如圖5所示:
(1)請確定這個拋物線的頂點坐標
(2)求拋物線的函數(shù)關系式
(3)張強這次投擲成績大約是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形 ABCD 中,∠C+∠D=210°,E、F 分別是 AD,BC 上的點,將四邊形 CDEF 沿直線 EF 翻折,得到四邊形 C′D′EF, C′F 交 AD 于點 G,若△EFG 有兩個角相等,則∠EFG=______ °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD
(1)若∠AOC=60°,求∠BOE的度數(shù);
(2)若OF平分∠AOD,試說明OE⊥OF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是( )
A.四邊形AEDF是平行四邊形
B.若∠BAC=90°,則四邊形AEDF是矩形
C.若AD平分∠BAC,則四邊形AEDF是矩形
D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com