【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(,),點(diǎn)Q的坐標(biāo)為(,),且,,若P,Q為某個矩形的兩個頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”.下圖為點(diǎn)P,Q 的“相關(guān)矩形”的示意圖.
(1)已知點(diǎn)A的坐標(biāo)為(1,0).
①若點(diǎn)B的坐標(biāo)為(3,1)求點(diǎn)A,B的“相關(guān)矩形”的面積;
②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(2)⊙O的半徑為,點(diǎn)M的坐標(biāo)為(m,3).若在⊙O上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.
【答案】(1)①2;② 或 ;(2)1≤m≤5 或者.
【解析】
試題分析:(1)①由相關(guān)矩形的定義可知:要求A與B的相關(guān)矩形面積,則AB必為對角線,利用A、B兩點(diǎn)的坐標(biāo)即可求出該矩形的底與高的長度,進(jìn)而可求出該矩形的面積;
②由定義可知,AC必為正方形的對角線,所以AC與x軸的夾角必為45,設(shè)直線AC的解析式為;y=kx+b,由此可知k=±1,再(1,0)代入y=kx+b,即可求出b的值;
(2)由定義可知,MN必為相關(guān)矩形的對角線,若該相關(guān)矩形的為正方形,即直線MN與x軸的夾角為45°,由因?yàn)辄c(diǎn)N在圓O上,所以該直線MN與圓O一定要有交點(diǎn),由此可以求出m的范圍.
試題解析:(1)①∵A(1,0),B(3,1),由定義可知:點(diǎn)A,B的“相關(guān)矩形”的底與高分別為2和1,∴點(diǎn)A,B的“相關(guān)矩形”的面積為2×1=2;
②由定義可知:AC是點(diǎn)A,C的“相關(guān)矩形”的對角線,又∵點(diǎn)A,C的“相關(guān)矩形”為正方形,∴直線AC與x軸的夾角為45°,設(shè)直線AC的解析為:y=x+m或y=﹣x+n,把(1,0)分別y=x+m,∴m=﹣1,∴直線AC的解析為:y=x﹣1,把(1,0)代入y=﹣x+n,∴n=1,∴y=﹣x+1,綜上所述,若點(diǎn)A,C的“相關(guān)矩形”為正方形,直線AC的表達(dá)式為y=x﹣1或y=﹣x+1;
(2)設(shè)直線MN的解析式為y=kx+b,∵點(diǎn)M,N的“相關(guān)矩形”為正方形,∴由定義可知:直線MN與x軸的夾角為45°,∴k=±1,∵點(diǎn)N在⊙O上,∴當(dāng)直線MN與⊙O有交點(diǎn)時,點(diǎn)M,N的“相關(guān)矩形”為正方形,當(dāng)k=1時,作⊙O的切線AD和BC,且與直線MN平行,其中A、C為⊙O的切點(diǎn),直線AD與y軸交于點(diǎn)D,直線BC與y軸交于點(diǎn)B,連接OA,OC,把M(m,3)代入y=x+b,∴b=3﹣m,∴直線MN的解析式為:y=x+3﹣m.∵∠ADO=45°,∠OAD=90°,∴OD=OA=2,∴D(0,2);
同理可得:B(0,﹣2),∴令x=0代入y=x+3﹣m,∴y=3﹣m,∴﹣2≤3﹣m≤2,∴1≤m≤5,當(dāng)k=﹣1時,把M(m,3)代入y=﹣x+b,∴b=3+m,∴直線MN的解析式為:y=x+3+m,同理可得:﹣2≤3+m≤2,∴﹣5≤m≤﹣1;
綜上所述,當(dāng)點(diǎn)M,N的“相關(guān)矩形”為正方形時,m的取值范圍是:1≤m≤5或﹣5≤m≤﹣1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(3)班同學(xué)到野外上數(shù)學(xué)活動課,為測量池塘兩端A、B的距離,設(shè)計了如下方案:
(Ⅰ)如圖1,先在平地上取一個可直接到達(dá)A、B的點(diǎn)C,連接AC、BC,并分別延長AC至D,BC至E,使DC=AC,EC=BC,最后測出DE的距離即為AB的長;
(Ⅱ)如圖2,先過B點(diǎn)作AB的垂線,再在BF上取C、D兩點(diǎn)使BC=CD,接著過D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離.
閱讀回答下列問題:
(1)方案(Ⅰ)是否可行?請說明理由.
(2)方案(Ⅱ)是否可行?請說明理由.
(3)方案(Ⅲ)中作BF⊥AB,ED⊥BF的目的是;若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立? .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,D、E是△ABC內(nèi)兩點(diǎn),AD平分∠BAC.∠EBC=∠E=60°,若BE=6,DE=2,則BC的長度是( )
A.6
B.8
C.9
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一副三角尺的兩個直角頂點(diǎn)O重合在一起,在同一平面內(nèi)旋轉(zhuǎn)其中一個三角尺.
(1)如圖1,若 ∠ B O C = 70° ,則 ∠ A O D = 度 .
(2)如圖2,若 ∠ B O C = 50°,則 ∠ A O D = 度 .
(3)如圖1,請猜想 與 的關(guān)系,并寫出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:關(guān)于三角函數(shù)還有如下的公式:
sin(α±β)=sinαcosβ±cosαsinβ
tan(α±β)=
利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值.
例:tan75°=tan(45°+30°)===
根據(jù)以上閱讀材料,請選擇適當(dāng)?shù)墓浇獯鹣旅鎲栴}:
(1)計算:sin15°;
(2)某校在開展愛國主義教育活動中,來到烈士紀(jì)念碑前緬懷和紀(jì)念為國捐軀的紅軍戰(zhàn)士.李三同學(xué)想用所學(xué)知識來測量如圖紀(jì)念碑的高度.已知李三站在離紀(jì)念碑底7米的C處,在D點(diǎn)測得紀(jì)念碑碑頂?shù)难鼋菫?5°,DC為米,請你幫助李三求出紀(jì)念碑的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列不能判斷四邊形ABCD是平行四邊形的是( )
A. AB=CD,AD=BC B. AB∥CD,AD=BC
C. AB∥CD,AD∥BC D. ∠A=∠C,∠B=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A. ﹣2x2﹣3x2=﹣5x2 B. 6x2y3+2xy2=3xy
C. 2x33x2=6x6 D. (a+b)2=a2﹣2ab+b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把函數(shù)y=x的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?倍,橫坐標(biāo)不變,得到函數(shù)y=2x的圖象;也可以把函數(shù)y=x的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到函數(shù)y=2x的圖象.
類似地,我們可以認(rèn)識其他函數(shù).
(1)把函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?/span> 倍,橫坐標(biāo)不變,得到函數(shù)的圖象;也可以把函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span> 倍,縱坐標(biāo)不變,得到函數(shù)的圖象.
(2)已知下列變化:①向下平移2個單位長度;②向右平移1個單位長度;③向右平移個單位長度;④縱坐標(biāo)變?yōu)樵瓉淼?倍,橫坐標(biāo)不變;⑤橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變;⑥橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變.
(Ⅰ)函數(shù)的圖象上所有的點(diǎn)經(jīng)過④→②→①,得到函數(shù) 的圖象;
(Ⅱ)為了得到函數(shù)的圖象,可以把函數(shù)的圖象上所有的點(diǎn) .
A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥
(3)函數(shù)的圖象可以經(jīng)過怎樣的變化得到函數(shù)的圖象?(寫出一種即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com