【題目】下列不能判斷四邊形ABCD是平行四邊形的是( 。

A. AB=CD,AD=BC B. ABCD,AD=BC

C. ABCD,ADBC D. A=C,B=D

【答案】B

【解析】分析:根據(jù)平行四邊形的判定法則即可得出答案.

詳解:A、根據(jù)兩組對邊分別相等的四邊形為平行四邊形進行判定;B、無法進行判定;C、根據(jù)兩組對邊分別平行的四邊形為平行四邊形進行判定;D、根據(jù)兩組對角分別相等的四邊形為平行四邊形進行判定;故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將正比例函數(shù)y=2x的圖象向上平移3個單位,所得的直線不經過第象限.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x2﹣x﹣1=0的根的情況為(  )
A.有兩個不相等的實數(shù)根
B.有兩個相等的實數(shù)根
C.只有一個實數(shù)根
D.沒有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P的坐標為(,),點Q的坐標為(),且,,若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為點P,Q相關矩形.下圖為點P,Q 相關矩形的示意圖.

1)已知點A的坐標為(10).

若點B的坐標為(3,1)求點A,B相關矩形的面積;

C在直線x=3上,若點A,C相關矩形為正方形,求直線AC的表達式;

2O的半徑為,點M的坐標為(m,3).若在O上存在一點N,使得點M,N相關矩形為正方形,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀:我們約定,在平面直角坐標系中,經過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.

問題與探究:如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線經過B、C兩點,頂點D在正方形內部.

(1)直接寫出點D(m,n)所有的特征線;

(2)若點D有一條特征線是y=x+1,求此拋物線的解析式;

(3)點P是AB邊上除點A外的任意一點,連接OP,將△OAP沿著OP折疊,點A落在點A′的位置,當點A′在平行于坐標軸的D點的特征線上時,滿足(2)中條件的拋物線向下平移多少距離,其頂點落在OP上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】重慶到處都人從眾”……今年的五一小長假,相信重慶市民的朋友圈已被重慶太火刷屏了.據(jù)重慶市旅游發(fā)展委員會公布的數(shù)據(jù)顯示,五一節(jié)四天,重慶共接待境內外游客2559萬人次,2259萬用科學記數(shù)法表示為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面的變形規(guī)律:
=1﹣ ; = ; = ;…解答下面的問題:
(1)若n為正整數(shù),請你猜想 =
(2)求和: + + .(注:只能用上述結論做才能給分);
(3)用上述相似的方法求和: + + +…+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列能用完全平方公式因式分解的是(

A. x2+2xyy2 B. xy+y2 C. x22xy+y2 D. x24xy+2y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料并回答問題:

材料1:如果一個三角形的三邊長分別為a,b,c,記,那么三角形的面積為

古希臘幾何學家海倫(Heron,約公元50年),在數(shù)學史上以解決幾何測量問題而聞名.他在《度量》一書中,給出了公式①和它的證明,這一公式稱海倫公式.

我國南宋數(shù)學家秦九韶(約1202﹣﹣約1261),曾提出利用三角形的三邊求面積的秦九韶公式:

下面我們對公式②進行變形:

這說明海倫公式與秦九韶公式實質上是同一公式,所以我們也稱①為海倫﹣﹣秦九韶公式.

問題:如圖,在△ABC中,AB=13,BC=12,AC=7,⊙O內切于△ABC,切點分別是D、E、F.

(1)求△ABC的面積;

(2)求⊙O的半徑.

查看答案和解析>>

同步練習冊答案