【題目】已知,AB為⊙O的直徑,弦CDAB于點(diǎn)E,在CD的延長線上取一點(diǎn)P,PG與⊙O相切于點(diǎn)G,連接AGCD于點(diǎn)F

(Ⅰ)如圖①,若∠A20°,求∠GFP和∠AGP的大。

(Ⅱ)如圖②,若E為半徑OA的中點(diǎn),DGAB,且OA2,求PF的長.

【答案】(Ⅰ)∠GFP70°,∠AGP70°;(Ⅱ)PF4

【解析】

(Ⅰ)連接OG,在RtAEF中,∠A20°,可得∠GFP=∠EFA70°,因?yàn)?/span>OAOG,所以∠OGA=∠A20°,因?yàn)?/span>PG與⊙O相切于點(diǎn)G,得∠OGP90°,可得∠AGP90°﹣20°=70°.;

(Ⅱ)如圖,連結(jié)BG,OGOD,AD,證明△OAD為等邊三角形,得∠AOD60°,所以∠AGD30°,因?yàn)?/span>DGAB,所以∠BAG=∠AGD30°,在RtAGB中可求得AG6,在RtAEF中可求得AF2,再證明△GFP為等邊三角形,所以PFFGAGAF624

解:(Ⅰ)連接OG,

CDABE,

∴∠AEF90°,

∵∠A20°,

∴∠EFA90°﹣∠A90°﹣20°=70°,

∴∠GFP=∠EFA70°,

OAOG,

∴∠OGA=∠A20°,

PG與⊙O相切于點(diǎn)G,

∴∠OGP90°,

∴∠AGP=∠OGP﹣∠OGA90°﹣20°=70°.

(Ⅱ)如圖,連結(jié)BG,OG,OD,AD,

E為半徑OA的中點(diǎn),CDAB,

ODADOA,

∴△OAD為等邊三角形,

∴∠AOD60°,

∴∠AGDAOD30°,

DGAB,

∴∠BAG=∠AGD30°,

AB為⊙O的直徑,OA2,

∴∠AGB90°,AB4

AGABcos30°=6,.

OGOA

∴∠OGA=∠BAG30°,

PG與⊙O相切于點(diǎn)G,∴∠OGP90°,

∴∠FGP90°﹣30°=60°,

∵∠AEF90°,AE,∠BAG30°,

AF2,∠GFP=∠EFA60,

∴△GFP為等邊三角形,

PFFGAGAF624

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y1=x2tx-t+2x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),過y軸上的點(diǎn)C(0,4),直線y2=kx+3x軸,y軸于點(diǎn)MN,且ON=OC.

(1)求出tk的值.

(2)拋物線的對稱軸交x軸于點(diǎn)D,在x軸上方的對稱軸上找一點(diǎn)E,使△BDE與△AOC相似,求出DE的長.

(3)如圖2,過拋物線上動點(diǎn)GGHx軸于點(diǎn)H,交直線y2=kx+3于點(diǎn)Q,若點(diǎn)Q′是點(diǎn)Q關(guān)于直線MG的對稱點(diǎn),是否存在點(diǎn)G(不與點(diǎn)C重合),使點(diǎn)Q′落在y軸上?,若存在,請直接寫出點(diǎn)G的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtΔABC中,AB=AC,D、E是斜邊BC上兩點(diǎn),∠DAE=45°,將ΔADC繞點(diǎn)A順時針旋轉(zhuǎn)90°后,得到ΔAFB,連接EF,下列結(jié)論:①ΔAED≌ΔAEF,,③ΔABC的面積等于四邊形AFBD的面積,,⑤BE+DC=DE,其中正確的是(

A. ①②④B. ①③④C. ③④⑤D. ①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3).雙曲線y=(x>0)的圖象經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.

(1)直接寫出k的值及點(diǎn)E的坐標(biāo);

(2)若點(diǎn)F是OC邊上一點(diǎn),且FB⊥DE,求直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的對稱軸為,與軸的一個交點(diǎn)在之間,其部分圖像如圖所示,則下列結(jié)論:①點(diǎn),是該拋物線上的點(diǎn),則;;為任意實(shí)數(shù)).其中正確結(jié)論的個數(shù)是( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的最大值為4,且該拋物線與軸的交點(diǎn)為,頂點(diǎn)為.

1)求該二次函數(shù)的解析式及點(diǎn),的坐標(biāo);

2)點(diǎn)軸上的動點(diǎn),

的最大值及對應(yīng)的點(diǎn)的坐標(biāo);

②設(shè)軸上的動點(diǎn),若線段與函數(shù)的圖像只有一個公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,BC=12,已知圓O是ABC的外接圓,且半徑為10,則BC邊上的高為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識背景

當(dāng)a0x0時,因?yàn)椋?/span>20,所以x﹣2+0,從而x+(當(dāng)x=時取等號).

設(shè)函數(shù)y=x+(a0,x0),由上述結(jié)論可知:當(dāng)x=時,該函數(shù)有最小值為2

應(yīng)用舉例

已知函數(shù)為y1=x(x0)與函數(shù)y2=(x0),則當(dāng)x==2時,y1+y2=x+有最小值為2=4.

解決問題

(1)已知函數(shù)為y1=x+3(x﹣3)與函數(shù)y2=(x+3)2+9(x﹣3),當(dāng)x取何值時,有最小值?最小值是多少?

(2)已知某設(shè)備租賃使用成本包含以下三部分:一是設(shè)備的安裝調(diào)試費(fèi)用,共490元;二是設(shè)備的租賃使用費(fèi)用,每天200元;三是設(shè)備的折舊費(fèi)用,它與使用天數(shù)的平方成正比,比例系數(shù)為0.001.若設(shè)該設(shè)備的租賃使用天數(shù)為x天,則當(dāng)x取何值時,該設(shè)備平均每天的租貨使用成本最低?最低是多少元?

查看答案和解析>>

同步練習(xí)冊答案