(2011•舟山)如圖,AB是半圓直徑,半徑OC⊥AB于點O,AD平分∠CAB交弧BC于點D,連接CD、OD,給出以下四個結論:①AC∥OD;②CE=OE;③△ODE∽△ADO;④2CD2=CE•AB.其中正確結論的序號是_______________
①④
證明:①∵AB是半圓直徑,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于點D,
∴∠CAD=∠DAO=∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴①正確.
②∵△CED與△AED不全等,
∴CE≠OE,
∴②錯誤.
③∵在△ODE和△ADO中,只有∠ADO=∠EDO,其它兩角都不相等,
∴不能證明△ODE和△ADO全等,
∴③錯誤;
④∵AD平分∠CAB交弧BC于點D,
∴∠CAD=×45°=22.5°,
∴∠COD=45°,
∵AB是半圓直徑,
∴OC=OD,
∴∠OCD=∠ODC=67.5°
∵∠CAD=∠ADO=22.5°(已證),
∴∠CDE=∠ODC﹣∠ADO=67.5°﹣25°=45°,
∴△CED∽△COD,
=,
∴CD2=OD•CE=AB•CE,
∴2CD2=CE•AB.
∴④正確.
綜上所述,只有①④正確.
故答案為:①④.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

(2011貴州六盤水,4,3分)已知兩圓的半徑分別為1和2,圓心距為5,那么這兩個圓的位置關系是(    )
A.內切B.相交C.外離D.外切

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題9分)如圖,△ABC是直角三角形,∠ACB=90°.
(1)實踐與操作利用尺規(guī)按下列要求作圖,并在圖中標明相應的字母(保留作圖痕跡,不寫作法).
①作△ABC的外接圓,圓心為O;
②以線段AC為一邊,在AC的右側作等邊△ACD;
③連接BD,交⊙O于點F,連接AE,
(2)綜合與運用 在你所作的圖中,若AB=4,BC=2,則:
①AD與⊙O的位置關系是______.(2分)
②線段AE的長為__________.(2分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011•常州)已知:如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個菱形(如圖2).記AB的長度為a,BM的長度為b.
(1)圖形①中∠B= 72 °,圖形②中∠E= 36 °;
(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱為“風箏一號”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱為“飛鏢一號”.
①小明僅用“風箏一號”紙片拼成一個邊長為b的正十邊形,需要這種紙片 5 張;
②小明若用若干張“風箏一號”紙片和“飛鏢一號”紙片拼成一個“大風箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.請你在圖3中畫出拼接線并保留畫圖痕跡.(本題中均為無重疊、無縫隙拼接)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011•成都)已知:如圖,以矩形ABCD的對角線AC的中點O為圓心,OA長為半徑作⊙O,⊙O經過B、D兩點,過點B作BK⊥AC,垂足為K.過D作DH∥KB,DH分別與AC、AB、⊙O及CB的延長線相交于點E、F、G、H.
(1)求證:AE=CK;
(2)如果AB=a,AD=(a為大于零的常數(shù)),求BK的長:
(3)若F是EG的中點,且DE=6,求⊙O的半徑和GH的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AD,AC分別是⊙O的直徑和弦.且∠CAD=30°.OB⊥AD,交AC于點B.若OB=5,則BC的長等于_________。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分,第(1)小題滿分4分,第(2)小題滿分6分)如圖5,點C、D分別在扇形AOB的半徑OA、OB的延長線上,且OA=3,AC=2,CD平行于AB,并與弧AB相交于點MN
(1)求線段OD的長;
(2)若,求弦MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在⊙O中,直徑AB與弦CD相交于點P,∠CAB=40°,∠APD=65°。

(1)求∠B的大。
(2)已知圓心0到BD的距離為3,求AD的長。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

.已知內切,若的半徑為3cm,的半徑為6cm,那么兩圓的圓心距
的長是        .

查看答案和解析>>

同步練習冊答案