【題目】如圖,已知正方形ABCD的邊長為1,P是對角線AC上任意一點,E為AD上的點,且∠EPB=90°,PM⊥AD,PN⊥AB.
(1)求證:四邊形PMAN是正方形;
(2)求證:EM=BN;
(3)若點P在線段AC上移動,其他不變,設PC=x,AE=y,求y關于x的解析式.
【答案】(1)見解析;(2)見解析;(3) y=﹣x+1.
【解析】
(1)由四邊形ABCD是正方形,易得∠BAD=90°,AC平分∠BAD,又由PM⊥AD,PN⊥AB,即可證得四邊形PMAN是正方形;
(2)由四邊形PMAN是正方形,易證得△EPM≌△BPN,即可證得:EM=BN;
(3)首先過P作PF⊥BC于F,易得△PCF是等腰直角三角形,繼而證得△APM是等腰直角三角形,可得AP=AM=(AE+EM),即可得方程﹣x=(y+x),繼而求得答案.
(1)∵四邊形ABCD是正方形,
∴AC平分∠BAD,
∵PM⊥AD,PN⊥AB,
∴PM=PN,
又∵∠BAD=90°,∠PMA=∠PNA=90°,
∴四邊形PMAN是矩形,
∴四邊形PMAN是正方形;
(2)∵四邊形PMAN是正方形,
∴PM=PN,∠MPN=90°,
∵∠EPB=90°,
∴∠MPE=∠NPB,
在△EPM和△BPN中,
,
∴△EPM≌△BPN(ASA),
∴EM=BN;
(3)過P作PF⊥BC于F,如圖所示:
∵四邊形ABCD是正方形,
∴∠ABC=90°,AB=BC=1,∠PCF=45°,
∴AC==,△PCF是等腰直角三角形,
∴AP=AC﹣PC=﹣x,BN=PF=x,
∴EM=BN=x,
∵∠PAM=45°,∠PMA=90°,
∴△APM是等腰直角三角形,
∴AP=AM=(AE+EM),
即﹣x=(y+x),
解得:y=﹣x+1.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的文字,解答問題:
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用-1來表示的小數(shù)部分,你同意小明的表示方法嗎?
事實上,小明的表示方法是有道理,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
又例如:∵,即,
∴的整數(shù)部分為2,小數(shù)部分為(-2).
請解答:(1) 的整數(shù)部分是 ,小數(shù)部分是 .
(2)如果的小數(shù)部分為a, 的整數(shù)部分為b,求a+b-的值;
(3)已知: 10+=x+y,其中x是整數(shù),且0<y<1,求x-y的相反數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由于受到手機更新?lián)Q代的影響,某手機店經(jīng)銷的甲型號手機二月份售價比一月份售價每臺降價500元.如果賣出相同數(shù)量的甲型號手機,那么一月份銷售額為9萬元,二月份銷售額只有8萬元.
(1)一月份甲型號手機每臺售價為多少元?
(2)為了提高利潤,該店計劃三月份加入乙型號手機銷售,已知甲型號每臺進價為3500元,乙型號每臺進價為4000元,預計用不多于7.6萬元且不少于7.4萬元的資金購進這兩種手機共20臺,請問有幾種進貨方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,3).
(1)求拋物線y=x2+bx+c的表達式;
(2)點D為拋物線對稱軸上一點,當△BCD是以BC為直角邊的直角三角形時,求點D的坐標;
(3)點P在x軸下方的拋物線上,過點P的直線y=x+m與直線BC交于點E,與y軸交于點F,求PE+EF的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由黑色和白色正方形組成的一組有規(guī)律的圖案,則第2019個圖形中,黑色正方形的個數(shù)是( )
A.2019B.3027C.3028D.3029
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習指導:同學們,我們即將在“整式的加減”一章中學習同類項和合并同類項法則.同類項:所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項,例如,3和7是同類項.合并同類項法則:同類項的系數(shù)相加減,所得的結(jié)果作為系數(shù),字母和字母的指數(shù)不變.例如:.請你解決下面問題,一定要化簡哦。為了綠化校園,學校決定修建一塊長方形草坪,長30米,寬20米,并在草坪上修建如圖所示的等寬的十字路,小路寬為x米.
(1)用代數(shù)式表示小路和草坪的面積是多少平方米?
(2)當x=3米時,求草坪的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在2019個“口”中依次填入一列數(shù)字m1,m2,m3;……. m2019,使得其中任意四個相鄰的“口”中所填的數(shù)字之和都等于-10.已知m4=0,m6=-7,則m1+m2019的值為( )
A.0B.-3C.-10D.-14
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數(shù)y=x的圖象上,從左向右第3個正方形中的一個頂點A的坐標為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn,則Sn的值為__.(用含n的代數(shù)式表示,n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形ABCD的一條邊AD=8,E是BC邊上的一點,將矩形ABCD沿折痕AE折疊,使得頂點B落在CD邊上的點P處,PC=4(如圖1).
(1)求AB的長;
(2)擦去折痕AE,連結(jié)PB,設M是線段PA的一個動點(點M與點P、A不重合).N是AB沿長線上的一個動點,并且滿足PM=BN.過點M作MH⊥PB,垂足為H,連結(jié)MN交PB于點F(如圖2).
①若M是PA的中點,求MH的長;
②試問當點M、N在移動過程中,線段FH的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段FH的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com