【題目】如圖,在一方形ABCD中.E為對角線AC上一點,連接EBED,

1)求證:△BEC≌△DEC:

2)延長BEAD于點F,若∠DEB=140°.求∠AFE的度數(shù).

【答案】1)證明見解析;(265°.

【解析】

1)根據(jù)正方形的性質(zhì)得出CD=CB,∠DCA=BCA,根據(jù)SAS即可證出結(jié)論;

2)根據(jù)對頂角相等求出∠AEF,根據(jù)正方形的性質(zhì)求出∠DAC,根據(jù)三角形的內(nèi)角和定理求出即可.

1)證明:∵四邊形ABCD是正方形,

CD=CB,∠DCA=BCA,

在△BEC和△DEC

∴△BEC≌△DECSAS).

2)解:∵∠DEB=140°,

∵△BEC≌△DEC,

∴∠DEC=BEC=70°,

∴∠AEF=BEC=70°,

∵∠DAB=90°,

∴∠DAC=BAC=45°,

∴∠AFE=180°-70°-45°=65°.

答:∠AFE的度數(shù)是65°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=BC,BEAC于點E,ADBC于點D,BAD=45°,AD與BE交于點F,連接CF.

(1)求證:BF=2AE;

(2)若CD=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABEGx軸,BCDEHGAPy軸,點D、C、PHx軸上,A(1,2),B(1,2)D(3,0),E(3,﹣2),G(3,﹣2),把一條長為2018個單位長度且沒有彈性的細線線的粗細忽略不計)的一端固定在點A處,并按ABCDEFGH﹣﹣PA…的規(guī)律緊繞在圖形“凸”的邊上,則細線另一端所在位置的點的坐標是(  )

A. (1,2)B. (1,2)C. (1,0)D. (1,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

1x2+3x-4=0; 2)(x+12=4x;

3xx+4=-5x+4); 42x2-4x-1=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,我國煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調(diào)查中發(fā)現(xiàn):從零時起,井內(nèi)空氣中CO的濃度達到4mg/L,此后濃度呈直線型增加,在第7小時達到最高值46mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降.如圖所示,根據(jù)題中相關(guān)信息回答下列問題:

(1)求爆炸前后空氣中CO濃度y與時間x的函數(shù)關(guān)系式,并寫出相應的自變量取值范圍;
(2)當空氣中的CO濃度達到34mg/L時,井下3km的礦工接到自動報警信號,這時他們至少要以多少km/h的速度撤離才能在爆炸前逃生?
(3)礦工只有在空氣中的CO濃度降到4mg/L及以下時,才能回到礦井開展生產(chǎn)自救,求礦工至少在爆炸后多少小時才能下井?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD和菱形ECGF的邊長分別為2和4,∠A=120°.則陰影部分面積是 . (結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為培養(yǎng)學生的特長愛好,提髙學生的綜合素質(zhì),某校音樂特色學習班準備從京東商城里一次性購買若干個尤克里里和豎笛(每個尤克里里的價格相同,每個豎笛的價格相同),購買2個豎笛和1個尤克里里共需290元;豎笛單價比尤克里里單價的一半少25元.

(1)求豎笛和尤克里里的單價各是多少元?

(2)根據(jù)學校實際情況,需一次性購買豎笛和尤克里里共20個,但要求購買豎笛和尤克里里的總費用不超過3450元,則該校最多可以購買多少個尤克里里?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀,再解題

解方程(x﹣1)2﹣5(x﹣1)+4=0,可以將(x﹣1)看成一個整體,設(shè)x﹣1=y,則原方程可化y2﹣5y+4=0,解得y1=1;y2=4,當y=1時,即x﹣1=1,解得x=2,當y=4時,即x﹣1=4,解得x=5,所 原方程的解為x1=2,x2=5

請利用上述這種方法解方程:(3x﹣5)2﹣4(5﹣3x)+3=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點的坐標為,將點向右平移個單位得到點,其中關(guān)于的一元一次不等式的解集為,過點軸于得到長方形,

1)求點坐標______及四邊形的面積_______

2)如圖2,點點以每秒個單位長度的速度在軸上向上運動,同時點點以每秒個單位長度的速度勻速在軸上向左運動,設(shè)運動的時間為,問是否存在一段時間,使得的面積不大于的面積,若存在,求出的取值范圍;若不存在,說明理由;

3)在(2)的條件下,四邊形的面積是否發(fā)生變化,若不變化,請求出其值;若變化,說明理由.

查看答案和解析>>

同步練習冊答案