【題目】如圖1,點(diǎn)的坐標(biāo)為,將點(diǎn)向右平移個(gè)單位得到點(diǎn),其中關(guān)于的一元一次不等式的解集為,過點(diǎn)作軸于得到長方形,
(1)求點(diǎn)坐標(biāo)______及四邊形的面積_______;
(2)如圖2,點(diǎn)從點(diǎn)以每秒個(gè)單位長度的速度在軸上向上運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)以每秒個(gè)單位長度的速度勻速在軸上向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為秒,問是否存在一段時(shí)間,使得的面積不大于的面積,若存在,求出的取值范圍;若不存在,說明理由;
(3)在(2)的條件下,四邊形的面積是否發(fā)生變化,若不變化,請(qǐng)求出其值;若變化,說明理由.
【答案】(1);;(2)存在,;(3)不變;值為.
【解析】
(1)利用不等式求出m的值,結(jié)合平移的性質(zhì)得出B、C點(diǎn)坐標(biāo),再利用矩形面積求法得出答案;
(2)利用Q,P點(diǎn)移動(dòng)速度分別表示出△BOQ和△BOP的面積,進(jìn)而得出t的取值范圍,即可得出答案;
(3)利用
(1)由得,
∵不等式的解集為
∴
解得m= 4
∵點(diǎn)A的坐標(biāo)為(0, 2), 且向右平移b個(gè)單位得到點(diǎn)B
∴B(4, 2)
∵BC⊥x軸于C
∴C(4,0)
∵AB//OC,∠AOC=∠BCO = 90°
∴∠B+∠OCB = 180°
∴∠B=90°
∴四邊形AOCB是矩形
∴
故答案為:;;
(2)存在,理由如下:
由題意知: OQ= t,CP= 2t
∵四邊形AOCB是矩形,OC= 4
∴∠BAO=∠BCO= 90°,OP=4- 2t
∴AB⊥OA,BC⊥OC
∵
若的面積不大于的面積.則
解得:
∵t>0
∴
(3)不變,理由如下:
∵
∴
= 2t+4- 2t
=4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一方形ABCD中.E為對(duì)角線AC上一點(diǎn),連接EB、ED,
(1)求證:△BEC≌△DEC:
(2)延長BE交AD于點(diǎn)F,若∠DEB=140°.求∠AFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一個(gè)長、寬、高分別為5dm、4dm、3dm的無蓋長方體木箱(如圖,AB=5dm,BC=4dm,AE=3dm).
(1) 求線段BG的長;
(2) 現(xiàn)在箱外的點(diǎn)A處有一只蜘蛛,箱內(nèi)的點(diǎn)C處有一只小蟲正在午睡,保持不動(dòng).請(qǐng)你為蜘蛛設(shè)計(jì)一種捕蟲方案,使得蜘蛛能以最短的路程捕捉到小蟲.(木板的厚度忽略不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△BDE都是等邊三角形,且A,E,D三點(diǎn)在一直線上.請(qǐng)你說明DA﹣DB=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將三角形ABC向左平移至點(diǎn)B與原點(diǎn)重合,得三角形A′OC′.
(1)直接寫出三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)A ,B ,C ;
(2)畫出三角形A′OC′;
(3)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形對(duì)折后展開(圖④是連續(xù)兩次對(duì)折后再展開),再按圖示方法折疊,能夠得到一個(gè)直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑為2,AB為直徑,CD為弦.AB與CD交于點(diǎn)M,將 沿CD翻折后,點(diǎn)A與圓心O重合,延長OA至P,使AP=OA,連接PC
(1)求CD的長;
(2)求證:PC是⊙O的切線;
(3)點(diǎn)G為 的中點(diǎn),在PC延長線上有一動(dòng)點(diǎn)Q,連接QG交AB于點(diǎn)E.交 于點(diǎn)F(F與B、C不重合).問GEGF是否為定值?如果是,求出該定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=3,AC= ,AB的垂直平分線ED交BC的延長線于D點(diǎn),垂足為E,則sin∠CAD=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BC→CD→DA運(yùn)動(dòng)至點(diǎn)A停止.設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,y關(guān)于x的函數(shù)圖象如圖2所示,則m的值是( )
A.6
B.8
C.11
D.16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com