【題目】已知,△ABC中,∠C=90°.
(1)若AC=4,BC=3,AE=,DE⊥AC.且DE=DB,求AD的長;
(2)請(qǐng)你用沒有刻度的直尺和圓規(guī),在線段AB上找一點(diǎn)F,使得點(diǎn)F到邊AC的距離等于FB(注:不寫作法,保留作圖痕跡,對(duì)圖中涉及到的點(diǎn)的用字母進(jìn)行標(biāo)注)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D為BC邊上一個(gè)動(dòng)點(diǎn)(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)求證:CE平分∠ACF;
(3)若AB=2,當(dāng)四邊形ADCE的周長取最小值時(shí),求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將沿著過中點(diǎn)的直線折疊,使點(diǎn)落在邊上的處,稱為第次操作,折痕到的距離記為,還原紙片后,再將沿著過中點(diǎn)的直線折疊,使點(diǎn)落在邊上的處,稱為第次操作,折痕到的距離記為;按上述方法不斷操作下去…,經(jīng)過第次操作后得到的折痕,到的距離記為;若,則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點(diǎn)P從點(diǎn)B出發(fā),以速度沿向點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)_______.(用含t的代數(shù)式表示)
(2)當(dāng)點(diǎn)P從點(diǎn)B開始運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以的速度沿向點(diǎn)A運(yùn)動(dòng),當(dāng)≌時(shí),求v的值.
(3)在(2)的條件下,求≌時(shí)v的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法:①射線是軸對(duì)稱圖形;②角的平分線是角的對(duì)稱軸;③軸對(duì)稱圖形的對(duì)稱點(diǎn)一定在對(duì)稱軸的兩側(cè);④平行四邊形是軸對(duì)稱圖形;⑤平面上兩個(gè)全等的圖形一定關(guān)于某條直線對(duì)稱,其中正確的說法有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ACDF中,AC=DF,點(diǎn)B在CD上,點(diǎn)E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.
(1)用兩種不同的方法表示出長方形ACDF的面積S,并探求a,b,c之間的等量關(guān)系(需要化簡)
(2)請(qǐng)運(yùn)用(1)中得到的結(jié)論,解決下列問題:
①求當(dāng)c=10,a=6時(shí),求S的值;
②當(dāng)c﹣b=1,a=5時(shí),求S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).
(1)請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△DEF(其中D、E、F分別是A、B、C的對(duì)應(yīng)點(diǎn)).
(2)直接寫出(1)中F點(diǎn)的坐標(biāo)為 .
(3)若直線l經(jīng)過點(diǎn)(0,﹣2)且與x軸平行,則點(diǎn)C關(guān)于直線l的對(duì)稱點(diǎn)的坐標(biāo)為 .
(4)在y軸上存在一點(diǎn)P,使PC﹣PB最大,則點(diǎn)P的坐標(biāo)為 .
(5)第一象限有一點(diǎn)M(4,2),在x軸上找一點(diǎn)Q使CQ+MQ最短,畫出最短路徑,保留作圖痕跡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,點(diǎn)是上任意一點(diǎn),以為邊作正方形.
①連接,求證:;
②連接,猜想的度數(shù),并證明你的結(jié)論;
③設(shè)點(diǎn)在線段上運(yùn)動(dòng),,正方形的面積為,正方形的面積為,試求與的函數(shù)關(guān)系式,并寫出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com